DRAFT: 100 Gb/s per Lane for Electrical Interfaces and PHYs Call For Interest Consensus Presentation

CFI Target: IEEE 802.3 November 2017 Plenary

Objective

- To gauge the interest and build consensus of starting a study group investigating a "100 Gb/s per lane for electrical interfaces and PHYs" project
- We do **not** need to:
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose a solution
 - Create a PAR or 5 Criteria
 - Create a standard
- Anyone in the room may vote or speak

Higher speed copper transmission

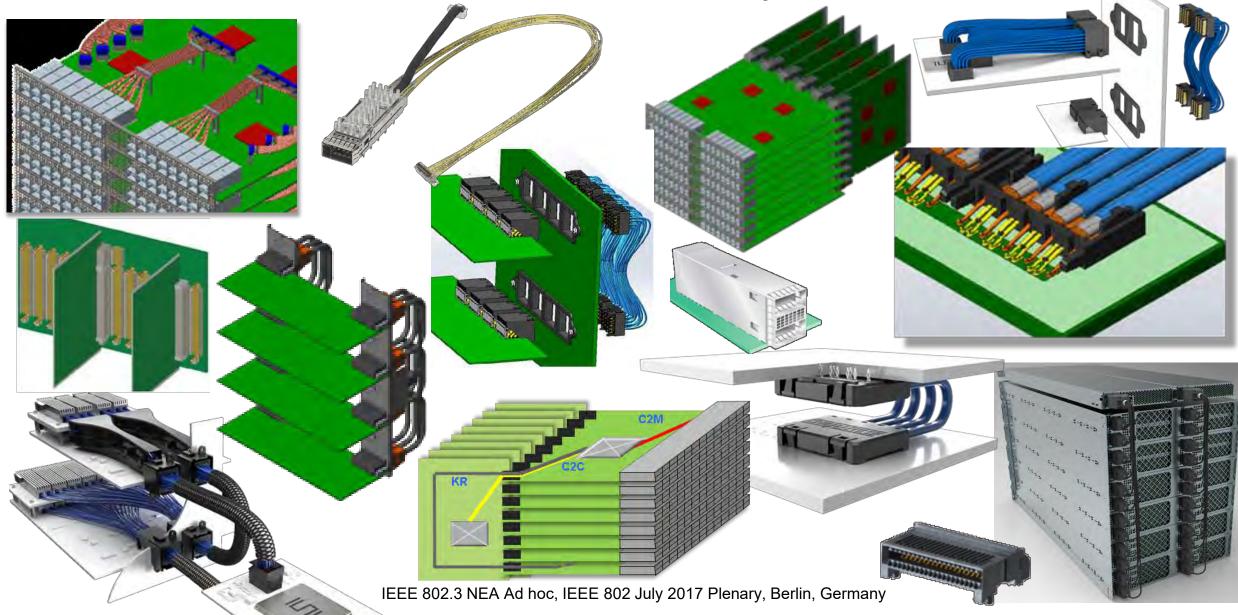

What are the limits of copper?

- Higher speed copper was predicted to be dead a decade ago
 but this has also been the case for the last 30 years
- Copper keeps on pushing the frequency limits
- Copper vs optical gap is closing as speeds increase
- Although optics offer reach and density, electrical still offers lower cost and power
- Equalization technology and modulation techniques continue to be improved
 - PAM4, ENRZ, Duobinary, etc.

DATA COMMUNICATIONS

3

 The economics at stake are huge, "Do you really want to bet against copper?"



Motivation for 100 Gbps per Lane

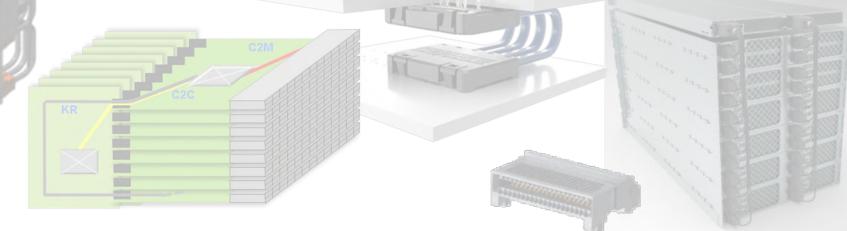
- Parallel interfaces limit abilities
- Cost optimization (motivation for much of the industry)
- Maximize system efficiency
- 100Gbps per lane could be leveraged for many parts in the Ethernet family

Web-scale data centers and cloud based services are presented as leading applications

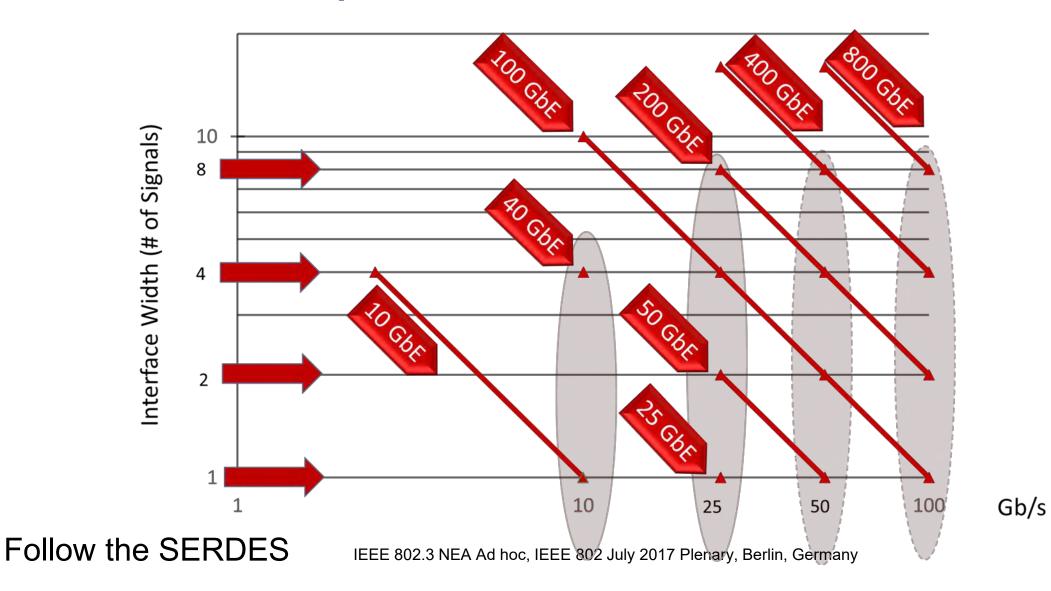
Electrical interfaces come in many shapes and sizes.

Tonight's Meeting

• To present the


market **NEED**, technical **Feasibility**,

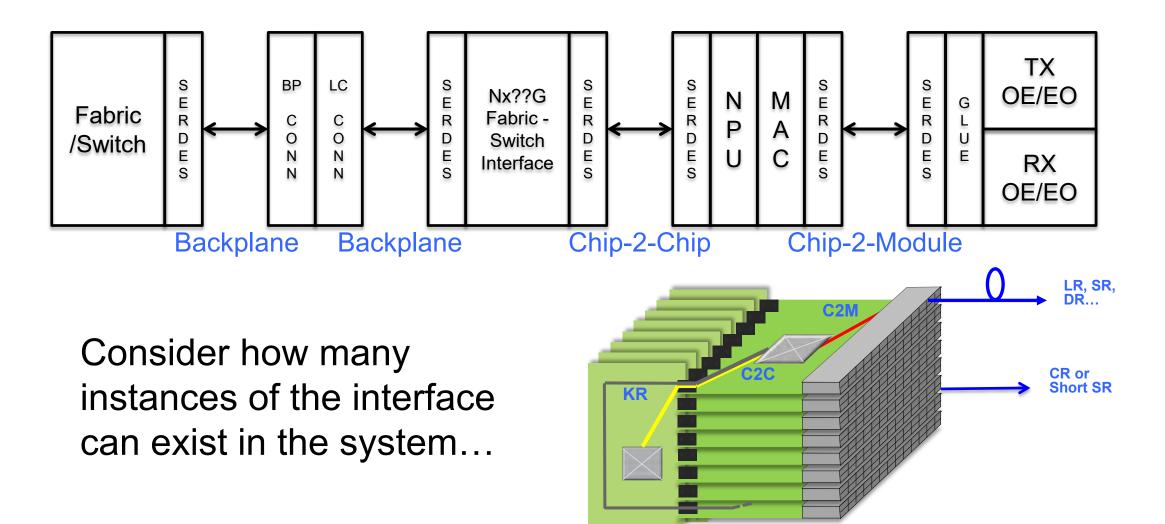
and *impact* on relevant PHYs and data rates


of 100Gbps/lane-based electrical signaling.

- To gain consensus towards Call-for-Interest to form a study group.
- We are NOT discussing specific implementations or objectives these are just some of the reasons that we <u>need</u> a study group!

Market Drivers 100 Gb/s per Electrical Lane Ethernet Market Drivers -

High Speed Front End Interconnects The Road Map of Port Rates


The Ethernet Family (100 Gb/s and Above)

	Signaling (Gb/s)	Electrical Interface	Backplane	Twin- ax	MMF	500m SMF	2km SMF	10km SMF	40km SMF
100GBASE-	10	CAUI-10		CR10	SR10		<u>10X10</u>		
	25	CAUI-4 / 100GAUI-4	KR4	CR4	SR4	PSM4	CWDM4 CLR4	LR4	ER4
	50	100GAUI-2	KR2	CR2	SR2		-		
	100	?	?	?		DR			
200GBASE-	25	200GAUI-8							
	50	200GAUI-4	KR4	CR4	SR4	DR4	FR4	LR4	
	100	?	?	?					
400GBASE-	25	400GAUI-16			SR16				
	50	400GAUI-8					FR8	LR8	
	100	?	?	?		DR4			

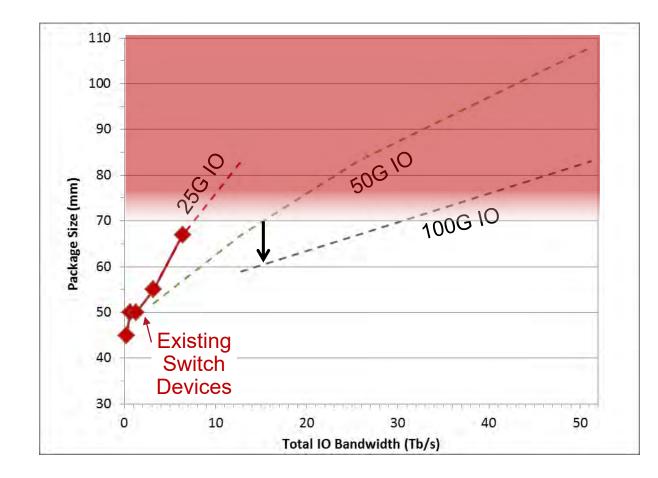
Includes Ethernet standards in development

<u>Underlined</u> – indicates industry MSA or proprietary solutions

What Are We Talking About?

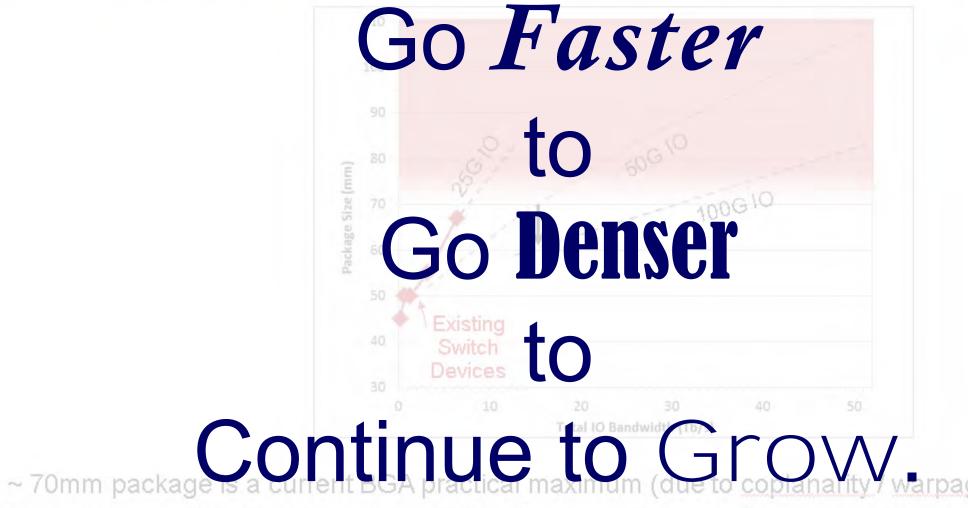
Interface Width: High Level Math

- System Connections
 - Consider a system has 10s of thousands of interconnects (say 15k)
 - For the same throughput:
 - 25Gbps/lane "by 4" → 60k interfaces
 - 100Gbps/lane "by 1" → 15k interfaces
- Pin Count of a 10Tb chip


Speed/lane	# Lanes in 1Tbps	# Balls Needer	
10 Gbps	1000	4000 🔸	
25 Gbps	400	1600 🚽	> Yikes!!
100 Gbps	100	400 🖌	

Enabling higher

throughput

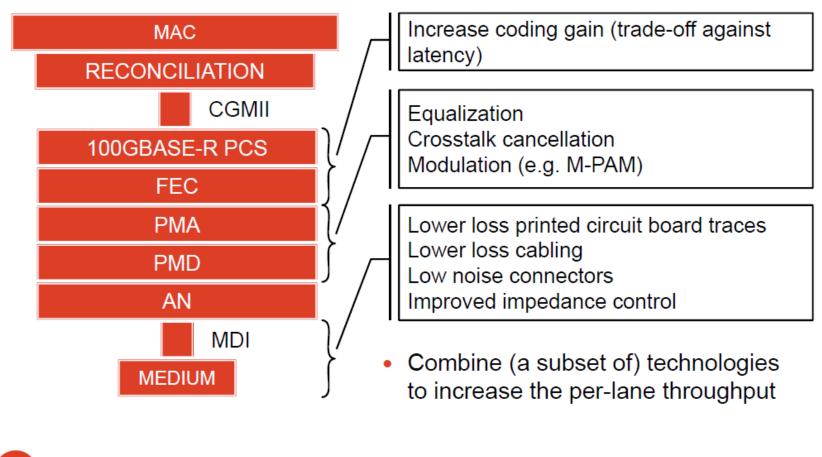

* Single lane = 2 differential pairs (4 balls)

IO Escape forcing transition to higher lane speeds

- ~ 70mm package is a current BGA practical maximum (due to coplanarity / warpage)
- This will force BGA devices with > 14Tb/s of aggregate bandwidth to transition to lane rates of higher greater than 50G (possibly 100G?) IEEE 802.3 NEA Ad hoc, IEEE 802 July 2017 Plenary, Berlin, Germany

IO Escape forcing transition to higher lane speeds

 This will force BGA devices with > 14Tb/s of aggregate bandwidth to transition to lane rates of higher greater than 50G (possibly 100G?)

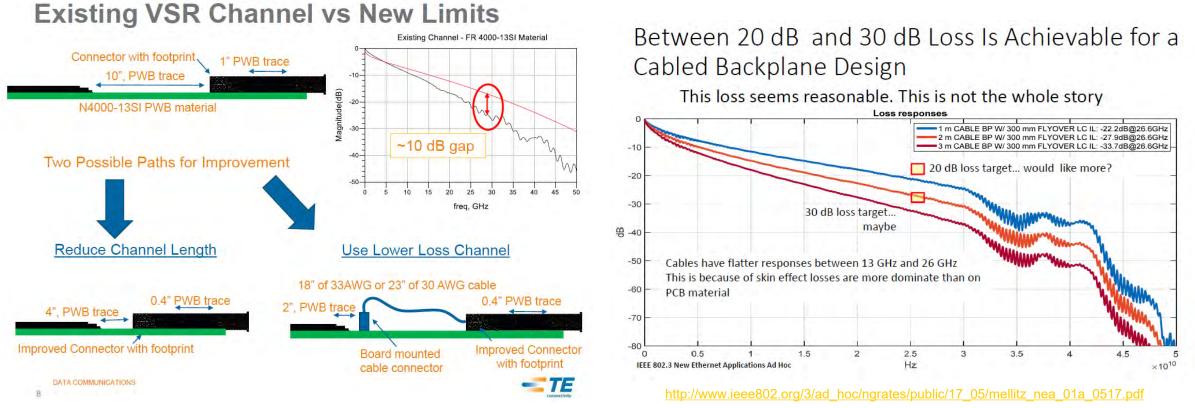

Technical Feasibility

100 Gb/s per Electrical Lane Ethernet Technical Feasibility -

The Story Hasn't Changed

- From 25G Backplane CFI
 <u>http://www.ieee802.org/3/cfi/1</u>
 <u>110_1/CFI_01_1110.pdf</u>
- "Knobs" for tuning are the same; some have extended their scope, but it's still the same list.
- Now is the time to rebalance for the next speed!

Potential enablers for more Gb/s/lane

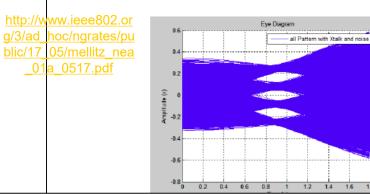


Not-your-Grandmother's Channel

• 25G NRZ channels may be too high loss,

but we have options to study.

http://www.ieee802.org/3/ad hoc/ngrates/public/17 05/tracy nea 01 0517.pdf


PHY Simulation Shows Promising Results

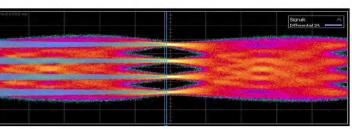
□ BER is about 6.2E-8.

TX FIR: 3 pre cursors, 25 post cursors, tail taps are very small. □ RX: CTLE + DFE.

> DSP

using PAM-4

Of course follow-on work will happen.

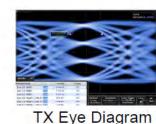

MACOM

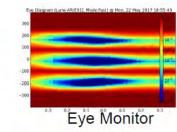
3

Narva: **Proof of Concept Vehicle for 100Gbps SERDES**

> DAC output @53.125GBaud

Tx and Rx Equalization


> Data Converters ADC and DAC.


> PRBS31 generator and checker.

Proof of Concepts Shown

100G Short Reach Design Results

- A 100Gb/s PAM4 SERDES for short reach has been developed and demoed.
- With 28nm process node, TX eye is clean. Multiple tap TX FIR has been applied for TX eye measurement.

Test Setup

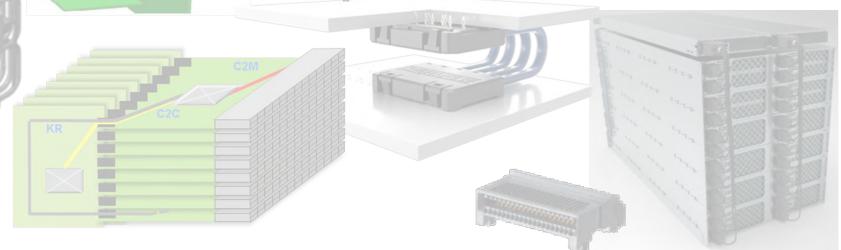
http://www.ieee802.or

/3/ad_hoc/ngrates/pi blic/17 05/sun nea 0

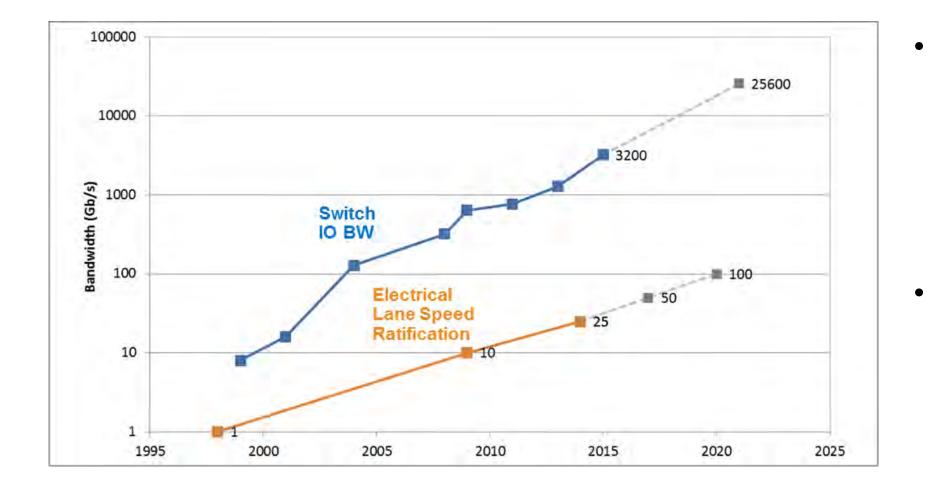
1a 0517.pdf

02 0517.pdf July 2017 Plenary, Berlin, Germany

PHY Simulation Shows Promising Results


BER is about 6.2E-8.

TX FIR: 3 pre cursors, 25 post cursors, tail taps are very small.
 RX: CTLE + DFE.


Further Study Needed – Optimize and Tune

Why Now??? 100 Gb/s per Electrical Lane Ethernet Timing -

Historical Perspective – Why 100G Now?

- Historical curve fit to highest rate switch products introduced to market (blue squares)
- Single ASIC IO capacity doubling every ~ 2 years

Enable the Future

	Signaling (Gb/s)	MMF	500m SMF	2km SMF	10km SMF	40km SMF
100GBASE-	10	SR10		<u>10X10</u>		
	25	SR4	PSM4	CWDM4 CLR4	LR4	ER4
	50	SR2		_		
	100		DR			
	25					
200GBASE-	50	SR4	DR4	FR4	LR4	
	100					
400GBASE-	25	SR16				
	50			FR8	LR8	
	100		DR4			

Not a statement of objectives, however this effort has the potential to impact many areas of the industry.

 \bullet

Includes Ethernet standards in development

<u>Underlined</u> – indicates industry MSA or proprietary solutions

The Interest is Here

Straw Poll #2

- Is there interest in developing AUI's based on 100 Gb/s electrical signaling per lane?
- Results
 - Yes 43
 - No 2
 - Maybe 15

Straw Poll #3

- Is there interest in developing Backplane / Copper Cable PHYs based on 100 Gb/s electrical signaling per lane?
 - Yes 18
 - No 10
 - Maybe 20

March 2017**

Straw Polls

May 2017* 🔶

Taken from NEA Ad Hoc unapproved Minutes

- * http://www.ieee802.org/3/ad hoc/ngrates/public/17 05/minutes nea 0517 unapproved.pdf
- ** http://www.ieee802.org/3/ad hoc/ngrates/public/17 03/minutes nea 0317 unapproved.pdf

IEEE 802.3 NEA Ad hoc, IEEE 802 July 20⁻

Straw Poll #1

- I would support development of a CFI that includes:
 - a) new backplane PHY,
 - b) new Passive Copper Cable PHY
 - c) Chip-to-chip (C2C AUI)
 - Chip-to-module (C2M AUI)
 - other e)

32

26

40

48

0

2

- not at this time.
- g) none of the above

Results

a)

b)

C)

d)

e)

f)

g) 0 Areas of Study

- 1. Chip-to-Chip AUI
- 2. Chip-to-Module AUI
- 3. Backplane
- 4. Potential changes of existing PHYs

NOTE: This is not a laundry list of items to be debated today, but this CFI enables study in these areas.

Summary

- 100 Gb/s is the next step on "Follow the SerDes" and continues existing market trends
 - Switching capacity progression
 - Reduction of interface width
- 100 Gb/s per lane seems feasible with a few tools still available
- Impact of 100 Gb/s Electrical Signaling is broad across the Ethernet Family
 - AUIs for existing PHYs for existing rates
 - For new PHYs for existing rates
 - New AUI's / PHYs for new rates?
- Let's form a Study Group!!

Straw Polls for CFI

Call-for-Interest Consensus

- Should a study group be formed for "100 Gigabit/s per Lane for Electrical Interfaces and PHYs"?
- Y: N: A:

• Room count:

Participation

- I would participate in a "100 Gigabit/s per Lane for electrical interfaces and PHYs" study group in IEEE 802.3
 - Tally:
- My company would support participation in a "100 Gigabit/s per Lane of Electrical Interfaces and PHYs" study group
 - Tally:

Future Work

- Ask 802.3 at Thursday's closing meeting to form a "100 Gigabit/s per lane for electrical interfaces and PHYs" study group
- Prepare ITU liaison letter for WG approval if Study Group formation is approved by WG.
- If approved:
 - 802 EC informed on Friday of formation of the study group
 - First study group meeting would be during January 2018 IEEE 802.3 interim meeting

