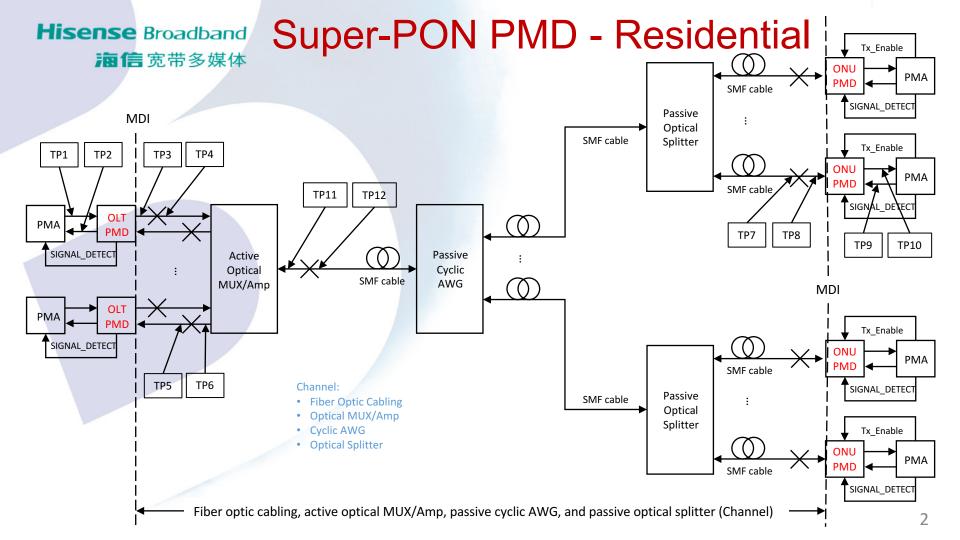
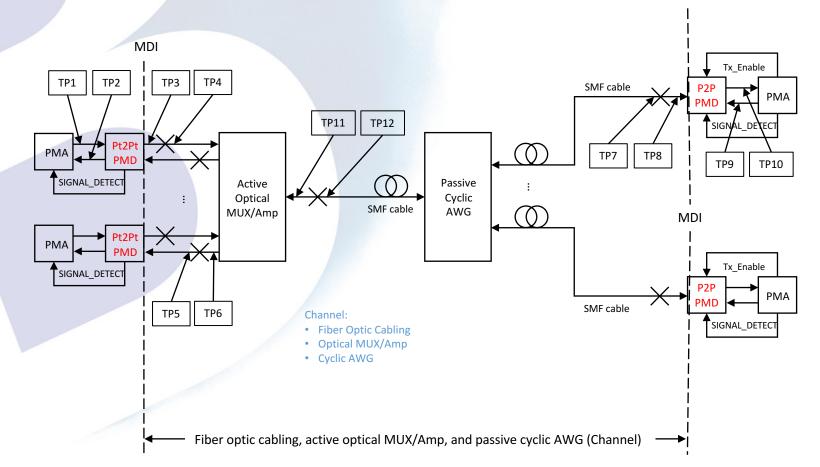
Cost Analysis of Tunable WDM-PON Transceivers

David Li Hisense Broadband

January 26, 2018


to Be with you 智连无限

IEEE802.3 Interim Meeting, January 2018



Content

- PMD requirements in Super-PON
 WDM transceivers with tunable lasers
- Cost analysis

Super-PON PMD – P2P

Residential PMD Requirements

OLT	Super-PON	TDM PON	
ТХ	Continuous mode, DWDM L-band	Continuous mode, 1490 nm or 1577 nm	
RX	Burst mode	Burst mode	
TX Power	relaxed, with amplification	Defined by IEEE802.3-2015 ITU984 and 987	
RX sensitivity	Same as TDM PON	Defined by IEEE802.3-2015 and ITU984 and 987	

ONU	Super-PON	TDM PON	
тх	Burst mode, DWDM C-band, optionally tunable	Burst mode, 1310 nm, 1270 nm	
RX	Continuous mode	Continuous mode	
TX Power	Same as TDM PON	Defined by IEEE802.3-2015 and ITU984 and 987	
RX sensitivity	Same as TDM PON	Defined by IEEE802.3-2015 and ITU984 and 987	

P2P PMD Requirements

P2P OLT	Super-PON	TDM PON	DWDM module
тх	Continuous mode, DWDM L-band	Continuous mode	Continuous mode, DWDM C-band
RX	Continuous mode	Burst mode	Continuous mode
TX Power	relaxed, w/o splitter loss	Defined by IEEE802.3-2015 and ITU984 and 987	0-4 dBm
RX sensitivity	Same as TDM PON	Defined by IEEE802.3-2015 and ITU984 and 987	-24 dBm

P2P ONU	Super-PON	TDM PON	DWDM module
тх	Continuous mode, DWDM C-band, optionally tunable	Burst mode, 1310 nm or 1270 nm	Continuous mode, DWDM C-band
RX	Continuous mode	Continuous mode	Continuous mode
TX Power	relaxed, w/o splitter loss	Defined by IEEE802.3-2015 and ITU984 and 987	0-4 dBm
RX sensitivity	relaxed, w/o splitter loss	Defined by IEEE802.3ae, av and ITU984 and 987	-24 dBm

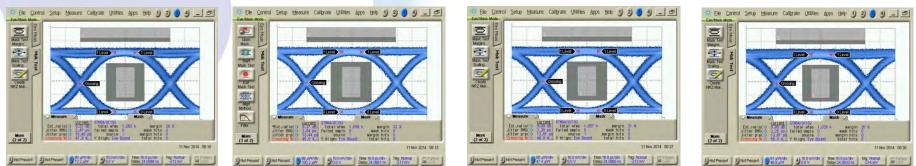
Tunable Technology

Why we need the Tunable Technologies for WDM application? Pros:

- The tunable modules are much easier to be installed in the field in the WDM system
- Inventory and operational cost is much lower than fixed

Cons:

Initial module cost is higher than that of the fixed wavelength module


10G L-band OLT Performance

CH3

	OP(dBm)	ER(dB)	Margin(%)	Wavelength	SEN
CH1	7.95	9.51	28	1596.342	-30.5
CH2	7.87	9.27	32	1597.197	-30.3
CH3	7.65	9.68	31	1598.041	-30.8
CH4	7.54	9.6	28	1598.892	-30.6

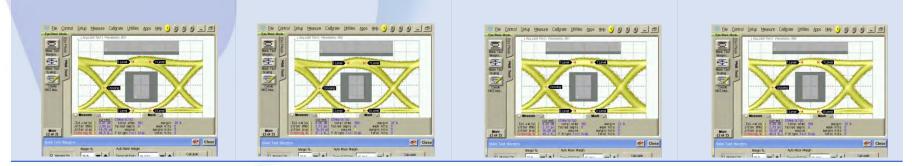
CH1

CH2

L-band devices with fixed wavelength EML lasers are available.

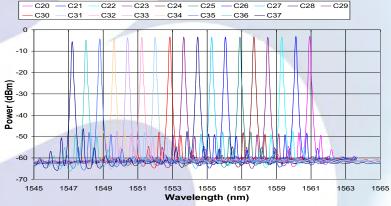
CH4

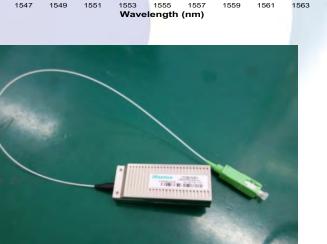
10G C-band ONU Performance

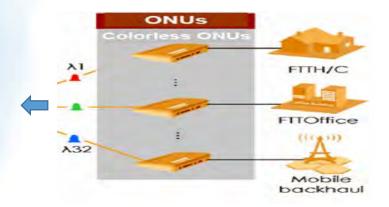

		OP(dBm)	ER(dB)	Margin(%)	I_VCC	TEC_T(℃)	I_BIAS(mA)	I_MOD(mA)	I_SOA(mA)
	CH0	7.98	9.01	29	863	39	68	69	269
D6E031101 (25℃)	CH1	7.20	8.80	28	727	47	75	53	230
(25)	CH2	6.34	8.81	22	725	55	82	58	217
	CH3	6.53	8.88	25	735	60	123	57	184

CH0

CH2

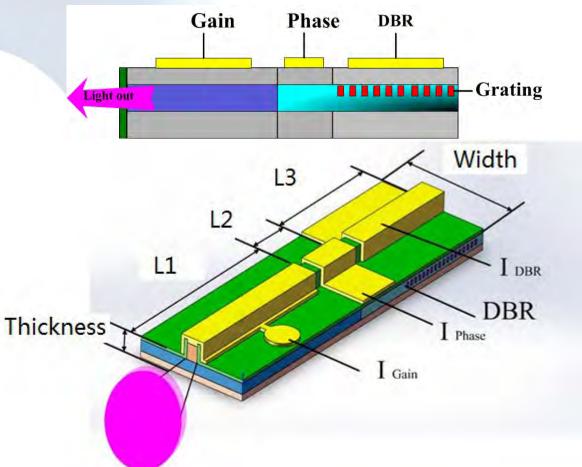



C-band ONU modules with tunable wavelength lasers are available

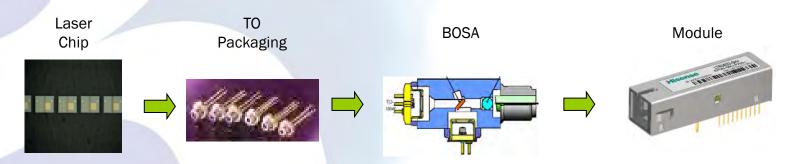

Hisense Broadband

Single DBR Tunable Laser for ONU

酒信宽带多媒体



Specification:


- Operating wave length: 1524 1560nm
- Tuning range: >12nm
- Output power: >10mW
- ✤Data rate: >10Gbps
- Can be tuned to cover 16 channels with 100G spacing

Single DBR Tunable Laser Structure

- Similar as DFB laser with the tunable DBR section
 Tuning range
- Tuning range can cover 12-16 100G channels

Manufacturing Process

No	Tasks	Actions
1	Improve the laser yield	With the production volume increasing and the yield improvement, the tunable laser cost may be reduced
2	Reduce the cost of packaging	The traditional WDM TOSA is packaged with the XMD. Since the output power of the Super-PON lasers are relaxed, the inexpensive TO can be used for the application
3	Manufacturing improvement	Improve the manufacturing efficiency
4	Simplify the testing and calibration	Testing and calibration automation

ONU TOSA Relative Costs

		Uncooled laser (DML)	Cooled laser – single λ	Cooled laser – partially tunable (e.g., 4 λ)	Cooled laser – fully tunable (e.g., 12 λ)
	1 Gb/s	1x	5 to 10x	6 to 12x	8 to 15x
	2.5 Gb/s	1x	5 to 10x	6 to 12x	8 to 15x
	10 Gb/s	4x	8 to 15x	10 to 18x	12 to 22x

- $\lambda \in$ C-band (1530 .. 1565 nm)
- Nominal channel spacing: 100 GHz

	1 Gb/s	2.5 Gb/s	10 Gb/s	
Launch power	-1 to 4 dBm	-1 to 4 dBm	4 to 9 dBm	

P2P TOSA Relative Costs

	Uncooled laser (DML)	Cooled laser – single λ		Cooled laser – partially tunable (e.g., 12 λ)	
10 Gb/s	1x	3.5x	4x	5x	12x

- $\lambda \in$ C-band (1530 .. 1565 nm)
- Nominal channel spacing: 100 GHz
- -10 to -5 dBm launch power

Cost Trend

- As of today, PON have been deployed widely and about 70M new ONU terminals are added per year. In the past ten years GPON prices dropped to 1/10 with demand increase and cost reduction efforts
- Now DWDM TOSA cost is ~5x higher than the cost of 10G-PON uncooled TOSA. It is expected that DWDM TOSA cost may reach ~3x of the uncooled TOSA with volumes increasing
- The tunable DWDM TOSA cost (with 12 λ tuning) is expected to be about 50% higher than the cost of the fixed DWDM TOSA

- The Super-PON architecture is the best solution to expand the subscriber numbers and reach longer distance with low cost per subscriber
- DBR tunable lasers are very promising for the Super-PON architecture
- The inventory and operational cost of tunable WDM-PON modules will be much lower than that of the fixed wavelength modules
- The cost of optical modules may be reduced by lower output power requirements of transmitters in Super-PON
- The cost of tunable WDM-PON modules can be further reduced by higher deployment volumes, yield improvements of key components, and improved production efficiency