Motivation

- Striving for accuracy and correctness
 - New fibre types
 - Tough decisions at 10G: can't over- or under-engineer
- Extending GbE spreadsheet to cover scrambled as well as block codes

Side Benefit

- More consistent treatment of interactions between power penalties
New features

- New boxes for baseline wander (BLW)
- Attenuation output at wavelength
- New "Pcross" column
- "Back-to-back" row in spreadsheet
- Graphing of penalties
- Marker to show target length, readout of margin at target
- New pages for new high bandwidth MMF, and 1550 nm on SMF

What’s not changed

- The methodology
- The layout and symbols
- Nearly all equations
- The results - hardly (at 1.25 GBd)
Issues outstanding

- Needs more experimental verification
- Attenuation formula at 1550 nm not very accurate (but you see what you are using)

Issues not covered or not changed

- Duty Cycle Distortion (DCD)
- Mode partition noise
- Optical Modulation Amplitude specification
- Jitter
- Multilevel coding
- Chirp

Methodology 1

As before,
min. transmitted power - max. receiver
sensitivity = power budget
budget - (worst losses & impairments)
= margin

Spreadsheet is a tool to aid specification of link length and optical interfaces facing the link, not primarily for transceiver design
Baseline Wander (BLW)

Low frequency cut (high pass filter, "zeros") causes baseline wander. BLW penalty is part of measured receiver sensitivity. There must be some there, if very little, even in 8B10B systems. See T11.2 Fibre Channel "Methodologies for Jitter Specification" by Dennis Petrich (see references for URL). It comes into this spreadsheet ONLY because it interacts with ISI, which involves the link (fibre) not just the transceiver. BLW could occur in transmitter or receiver.

Interacting Impairments

GbE spreadsheet has eight losses and impairments (penalties). Of these, I believe five or six interact (within the methodology of the spreadsheet)

<table>
<thead>
<tr>
<th></th>
<th>ISI</th>
<th>TP4</th>
<th>RIN</th>
<th>MPN</th>
<th>BLW</th>
<th>MN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISI</td>
<td>No?</td>
<td>? *</td>
<td>Yes</td>
<td>? #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP4</td>
<td>No?</td>
<td>? *</td>
<td>Yes</td>
<td>? #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIN</td>
<td>Yes</td>
<td>Yes</td>
<td>? #</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPN</td>
<td>Yes</td>
<td>? #</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLW</td>
<td></td>
<td>? #</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Petar Pepeljugoski and Dave Dolfi looking at this
any interaction not addressed here

Analogy (if it helps): a sparse matrix with diagonal terms present and few off-diagonal terms
Methodology 2 (Going deeper…)

1. Calculate BLW penalty in absence of ISI but with TP4 eye closure. This effect is already included in the receiver sensitivity, hence in the power budget. Fill entries in spreadsheet header.

2. Work out each loss and impairment separately, for each length, fill entries in spreadsheet table.

3. Work out total impairment of interacting things, subtract relevant separate impairments including any (BLW) hidden in the receiver. Result goes in box "Pcross".

4. Add across table to get total penalties.

5. Graph out each penalty and total penalties against length, record margin at target reach.

BLW Equations

For scrambled binary (PAM-2) codes, BLW is gaussian and can be treated as noise:

\[\text{sigma}_{BLW} = \sqrt{\pi f_{Low}/B} \]

where

- \(B \) = line rate = Baud rate,
- \(f_{Low} \) = high pass filter frequency if single zero,
- \(\text{sigma}_{BLW} \) = (one standard deviation of BLW) (half eye height before ISI)

So it’s like a signal-to-noise ratio.

(Extreme case) if \(\text{sigma}_{BLW} > 1/Q_{min} = 1/7.04 = 0.142 \), penalty for BER = \(10^{\sim 12} \) is infinite.

For \(\text{sigma}_{BLW} = 0.025 \) (i.e. 1.25% of whole eye), \(f_{Low}/B = 0.0002 \) (for \(B = 10\text{Gbit/s} \) that’s 2 MHz).
Equations continued

sigma_BLW does NOT decrease in line with the eye in the face of ISI (while RIN does) - but the eye closes anyway.

Hence penalty

\[P_{BLW} = -5 \log_{10} \left[1 - \left(\frac{Q_{min} \times \sigma_{BLW}}{H_{ISI}} \right)^2 \right] \text{ dB} \]

where \(H_{ISI} \) is the ratio of the eye height after and before ISI

e.g. for sigma_BLW = 0.025, no ISI, \(P_{BLW} = 0.07 \text{ dB} \)
for sigma_BLW = 0.025, 3 dB ISI, \(P_{BLW} = 0.29 \text{ dB} \)

Compare this with the RIN penalty,

\[P_{RIN} = -5 \log_{10} \left[1 - \left(\frac{Q_{min} \times \sigma_{RIN}}{} \right)^2 \right] \text{ dB} \]

And mode partition noise penalty,

\[P_{MPN} = -5 \log_{10} \left[1 - \left(\frac{Q_{min} \times \sigma_{MPN}}{} \right)^2 \right] \text{ dB} \]

Combined penalty 1

\[P = -5 \log_{10} \left[1 - \left\{ \frac{Q_{min} \times \sigma_{BLW}}{H_{ISI}} \right\}^2 + \frac{Q_{min} \times \sigma_{RIN}}{}^2 + \frac{Q_{min} \times \sigma_{MPN}}{}^2 \right\} \text{ dB} \]

which is not quite the same as

\[P_{BLW} + P_{RIN} + P_{MPN} \]

The difference is tiny in most healthy systems.

Eye closure caused by TP4 timing error/uncertainty is treated like bandwidth-induced ISI - actual equations are in the spreadsheet.
Combined penalty 2
How bad ISI exacerbates BLW penalty (or vice versa, or RIN and MPN penalties, or...)

Example 1
This is the greatest effect to any sheet of the current Gigabit Ethernet spreadsheet (1250 Mbit/s)

Difference is 0.08 dB at worst case.
Example 2 (fictitious)
Almost no ISI, three equal terms (RIN, MPN, BLW ~0.75 dB at 2 km) that are tied to signal strength.

Interaction of noise terms costs an extra ~2 dB at 2km

More detail on Baseline Wander
We think that if there are multiple low-pass filters:

In the non-limited case (small signal theory), the appropriate f_{Low} is roughly the -3dB point that you measure.

If there is BLW before and after a clipping (limiting) function, much of the BLW from before may be clipped out.

*** Warning; we haven't proved this statement, either by simulation or experiment.

Spreadsheet not designed as a transceiver design tool, but if you have a receiver and consider changing the BLW (by changing a coupling capacitor, say), if you change box E9 (Budget) from e.g. “8” to “=8-T11” (T11 being P,BLW) I think you will see the effect explicitly.
Baseline Wander and line code

Graph shows power penalty for LF cut:
- 8B10B case, data from Petrich, Fibre Channel document
- Scrambled case, calculated using formulae shown

Apparentely, need 2x lower LF cut in scrambled to get same penalty as for 8B10B, if no ISI, 10x with 3 dB ISI

Conclusions

- Modified spreadsheet does more, no harder to use
- Needs experimental verification
- Baseline Wander is a manageable item
- Keep LF cut low or your stressed eye will suffer!
- Be wary of any signal-borne noise
Acknowledgements

- Russ Patterson for identifying and quantifying the interaction
- Rick Walker, Charles Moore for the mathematics of baseline wander
- Del Hanson, David Cunningham for a great start point
- Dave Dolfi, Mike Dudek, Petar Pepeljugoski for valuable discussions

References

(http: unless indicated)

Hanson and Cunningham,
//grouper.ieee.org/groups/802/3/10G_study/public/email_attach/All_1250.xls

Petrich, "Methodologies for Jitter Specification" Rev 10.0,

Hanson, Cunningham, Dawe,
//grouper.ieee.org/groups/802/3/10G_study/public/email_attach/All_1250v2.xls

Cunningham and Lane, "Gigabit Ethernet Networking", Macmillan Technical Publishing,
ISBN 1-57870-062-0

//grouper.ieee.org/groups/802/3/10G_study/public/march00/pepeljugoski_1_0300.pdf

This presentation is
//grouper.ieee.org/groups/802/3/10G_study/public/march00/dawe_1_0300.pdf

More references listed at
//grouper.ieee.org/groups/802/3/10G_study/email/msg01127.html