
Programmable Pattern Generator

For 10GBASE-R/W

Jonathan Thatcher
World Wide Packets

13 March 2001; Thatcher

Motivation

n Motivation: provide a simple to implement,
programmable pattern generator.

n Rationale: it is not clear now, and may not
be clear for a long time, what pattern
provides the optimal characteristics for
stressing a link (future graduate students
beware ☺)

n In fact, there may not be a single optimal
pattern….

n But, we have a recommendation that is a
great starting point (see Ewen presentation)

13 March 2001; Thatcher

Requirements

n Relatively short pattern
n Able to be loaded into BERT memory
n High repetition rate

n High degree of flexibility
n Run length;
n Disparity vs time;
n Transition density;
n Spectral content;
n etc.

13 March 2001; Thatcher

Assumptions

n MDIO registers are used to describe the
algorithm. It is understood that the MDIO
registers are optional and that an alternative
method of control may be implemented.

n The bit stream indicated by the algorithm and its
“seeds” is normative. There is no specific
implementation prescribed or implied.

n While it should be clear that the concept used
here could be applied to any PRBS, we use the 58
bit scrambler selected for the 10GBase PCS(s).

n We do not know how to embed this pattern within
a SONET frame and ensure a relatively short,
deterministic pattern “on the wire.”

13 March 2001; Thatcher

Pattern -- General Description

n Repetition of 4 sub-patterns of 216 bits
n Pattern0; Pattern1; Pattern2; Pattern3;

Pattern0; Pattern2…

n Each sub-pattern is a segment out of the
258 scrambler stream

n Known starting state (last “64 bit” sequence
of previous sub-pattern)

n Modified to desired initial state by input of a
previously calculated “psuedoseed” input to
the scrambler

13 March 2001; Thatcher

Pattern options

n May have quarter length pattern
n Pattern0 = Pattern1 = Pattern2 = Pattern3
n pSeed0 = pSeed1 = pSeed2 = pSeed3

n May have half length pattern
n Pattern0 = Pattern2; Pattern1 = Pattern3
n pSeed0 = pSeed2; pSeed1 = pSeed3

13 March 2001; Thatcher

Algorithm

1. Load -- Load Scrambler with bit Seed(0:63)
2. Data -- Shift in 1023 (210-1) sets of data(0:63)
3. pSeed0 – Shift in 64 bit psuedoseed0(0:63)
4. Data -- Shift in 1023 sets of data(0:63)
5. pSeed1 – Shift in 64 bit psuedoseed1(0:63)
6. Data -- Shift in 1023 sets of data(0:63)
7. pSeed2 – Shift in 64 bit psuedoseed2(0:63)
8. Data -- Shift in 1023 sets of data(0:63)
9. pSeed3 – Shift in 64 bit psuedoseed3(0:63)

n return to step 2.

13 March 2001; Thatcher

Transmit MDIO Registers/Bits

n Transmit
n Conformance Test Control (Normal; Test)
n Test Data (0:63)
n Seed (0:63)
n PsuedoSeed0(0:63)
n PsuedoSeed1(0:63)
n PsuedoSeed2(0:63)
n PsuedoSeed3(0:63)

13 March 2001; Thatcher

Receive MDIO Registers/Bits

n Receive
n Conformance Test Control (Normal; Test)
n Test Data (0:63)
n Seed (0:63)
n PsuedoSeed0(0:63)
n PsuedoSeed1(0:63)
n PsuedoSeed2(0:63)
n PsuedoSeed3(0:63)
n Error Counter (0:15)
n Error Counter Reset (clears Error Counter

when written– auto-returns to 0)

13 March 2001; Thatcher

Layer Diagram

n Note that the pattern is generated “after”
the 64/66 encoder.

n The only portion of the 64/66 encoder used is
to insert the synchronization bits

13 March 2001; Thatcher

Pattern Generator Conceptual

1+x39+x58 Scrambler

Seed

pSeed0

pSeed1

pSeed2

pSeed3

Test Data

Gearbox

0 63

M
D

IO

64

64

…

load
“M

u
x”

PMA

01Sync Header

64B/66B
Encoder

64

PCS Transmit Data

13 March 2001; Thatcher

Sync Header

n Assumed constant throughout compliance
testing

n If not, we need a specific algorithm that
defines state such that spectrum is
deterministic

n Will be used by the Rx synchronization state
machine to align on 66 bit (64 bit) boundaries

13 March 2001; Thatcher

Creating the Seed / Psuedoseeds

n Seed:
n 64 bits
n Equal to 58 bits loaded as seed
n Plus 6 bits of predetermined prepend

n Psuedoseeds
n 64 bits….
n Mathematically determined (deterministic)

based on the result of the last state of the
previous subpattern

13 March 2001; Thatcher

Pattern Generator State Diagram

Ctrl=N

Init Test Mode
SyncHeader <= ’01’
Load <= true
Scrambler <= Seed

Norm Mode

Ctrl=T *clk

SubPat0_first
Load <= false
Scrambler <= TestData
cnt <= 2

Ctrl=T *clk

Ctrl=N

SubPat0_data
Scrambler <= TestData
cnt ++

SubPat0_seed
Scrambler <= pSeed0
cnt <= 1

Ctrl=T *clk

Ctrl=T *clk

Ctrl=T *
Clk *
cnt<1064

SubPat1_data
Scrambler <= TestData
cnt ++

SubPat1_seed
Scrambler <= pSeed1
cnt <= 1

TestCtrl=T *clk

Ctrl=T *
Clk *
cnt<1064

Ctrl=N

Ctrl=N Ctrl=N

N

Ctrl=T *
Clk *
Cnt=1064

N

N
Ctrl=N

N

N

Ctrl=T *
Clk *
Cnt=1064

To
SubPat2

From
SubPat3_data

Not shown: SubPat2_seed; SubPat2_data; SubPat3_seed; SubPat3_data

13 March 2001; Thatcher

Pattern Generator State Diagram 2

Ctrl=N

Init Test Mode
SyncHeader <= ’01’
Load <= true
Scrambler <= Seed

Norm Mode
Ctrl=T *clk

SubPat0_data
Load <= false
Scrambler <= TestData
cnt ++

Ctrl=T *
Clk *
cnt<1064

SubPat1_data
Scrambler <= TestData
cnt ++

SubPat1_seed
Scrambler <= pSeed1
cnt <= 1

TestCtrl=T *clk

Ctrl=T *
Clk *
cnt<1064

Ctrl=N Ctrl=N
N

Ctrl=T *
Clk *
Cnt=1064

N

Ctrl=N
N

N

Ctrl=T *
Clk *
Cnt=1064

From SubPat3_data

TestCtrl=T *clk

SubPat2_data
Scrambler <= TestData
cnt ++

SubPat2_seed
Scrambler <= pSeed1
cnt <= 1

TestCtrl=T *clk

Ctrl=T *
Clk *
cnt<1064

Ctrl=N

Ctrl=N
N

N

Ctrl=T *
Clk *
Cnt=1064

To SubPat3

13 March 2001; Thatcher

Pattern Generator State Diagram 3

Ctrl=N

Init Test Mode
SyncHeader <= ’01’
Load <= true
Scrambler <= Seed0

Norm Mode
Ctrl=T *clk

SubPat0_data
Load <= false
Scrambler <= TestData
cnt ++

Ctrl=T *
Clk *
cnt<1064

SubPat1_data
Load <= false
Scrambler <= TestData
cnt ++

SubPat1_seed
Load <= true
Scrambler <= Seed1
cnt <= 1
TestCtrl=T *clk

Ctrl=T *
Clk *
cnt<1064

Ctrl=N Ctrl=N
N

Ctrl=T *
Clk *
Cnt=1064

N

Ctrl=N
N

N

Ctrl=T *
Clk *
Cnt=1064

From SubPat3_data

TestCtrl=T *clk

SubPat2_data
Load <= false
Scrambler <= TestData
cnt ++

SubPat2_seed
Load <= true
Scrambler <= Seed2
cnt <= 1

TestCtrl=T *clk

Ctrl=T *
Clk *
cnt<1064

Ctrl=N

Ctrl=N
N

N

Ctrl=T *
Clk *
Cnt=1064

To SubPat3

13 March 2001; Thatcher

Advantages of Pattern Generator 2

n As compared to pattern generator 1…

n Guaranteed reset to known state at
beginning of every pattern

n No PsuedoSeed0(0:63) register required

n Small simplification in logic

13 March 2001; Thatcher

Advantages of Pattern Generator 3

n As compared to pattern generator 1…

n Guaranteed reset to known state at
beginning of every subpattern

n No PsuedoSeed0(0:63) register required

n Seed0:3 used instead of pSeed0:3

n Small simplification in logic

13 March 2001; Thatcher

Receive Sync and Compare

n Uses same algorithm as Tx for pattern
n Synchronization method needs to be determined

by ad-hoc
n Statistical
n Simple state machine
n Etc

n Check algorithm needs to be determined by ad-
hoc

n Bit by bit counter?
n Word by word by word counter?
n Reset during resync and under MDIO control?

13 March 2001; Thatcher

Motion

Move to create an ad-hoc to bring to the May
meeting (with circulation 2 weeks before
meeting) a complete draft of the
(programmable) pattern generator
described in (Ewen & Thatcher) / Thaler)

Moved:
Seconded:
Technical (75%):

For:
Against:
Abstain:

