

Analysis of SNR, TWDP and Implementation penalty vs. measured waveforms

Finite EQ lengths

Tom Lindsay, 28 June 2005

General analysis notes

- Waveforms from LRM private area (pre-processed)
- Plotted results are based on finite EQ lengths
 - 2 configurations: 14,5 and 10,3, FF @T/2, FB @T
- Implementation penalty (IP) = $SNR_{infinite} SNR_{finite}$ (dBo)
- Stressors ~4.5 dB PIE-D from recent Ewen set
 - − < 2 dB IP budget for EQ length</p>
 - SNR > 8.5 dB...
- OMA & OMSD for TWDP scaling determined via SW waveform analysis
- Vertical scales in dBo
- Semi-analytic method & MMSE adaptation
- Work in progress...

pre, symmetrical, and post cursor channels

- Next 2 plots show that pre-cursor fiber is almost always most stressful to shorter length EQs
 - Not surprising...
 - Not always true for very long lengths, but differences are small (not plotted)
 - Differences greatest for pre-emphasized waveforms
 - Shape not optimized for pre-cursor
- IP results are from OMA & OMSD scaled waveforms
 - Little difference
 - FYI, unscaled waveform IPs tend in the same direction as actual power

IP vs. waveform* for pre, symmetrical, and post cursor channels; 14,5 EQ

^{*}Additional waveforms tested here, beyond those displayed on slide 3.

IP vs. waveform* for pre, symmetrical, and post cursor channels; 10,3 EQ

^{*}Additional waveforms tested here, beyond those displayed on slide 3.

Slicer SNR

- 3 SNR traces vs. LRM reference Rx
 - Unscaled optical power
 - Scaled to match OMSD to OMSD of ideal reference Tx
 - Waveform has same MFB SNR at TP2 as reference (14.97 dB)
 - Scaled to match OMA to OMA of ideal reference Tx
 - Waveform has same OMA at TP2 as reference (-4.5 dBm)
- Actual power has direct effect on SNR
 - Scaling hides effect of actual power
- Waveshape also has strong effect on SNR
 - Effect of IP is secondary
- Pre-emphasized waveforms show advantage when scaled via OMA
 - But, is it real? More to come...
- As expected, 14,5 EQ shows higher SNR & lower IP than 10,3

SNR & IP vs. waveform for pre-cursor channel; 14,5 EQ

SNR & IP vs. waveform for pre-cursor channel; 10,3 EQ

Is current pre-emphasis advantage real?

- Unscaled SNR (blue) changes as expected per eyes
 - Eye powers are to same scale
- Slicer SNR has similar trends as input OMSD and OMA
 - Better tracking of OMSD than OMA
- With constant input power at TP2
 - Constant OMSD results in ~constant SNR; this is not surprising as MFB SNRs at TP2 are all the same
 - Constant OMA does not result in constant SNR
 - Neither scaling method predicts actual SNR
 - Direct effect of power on SNR is removed by scaling
- With current pre-emphasis method
 - Better TWDP_{OMA} does not relate to better SNR or finite length IP
 - IP tends in same direction as TWDP_{OMSD}

TWDP & IP vs. pre-emphasized waveforms for pre-cursor channel;

TWDP & IP vs. pre-emphasized waveforms for pre-cursor channel;

- 2 traces
 - OMSD scaling
 - OMA scaling
 - Per D2.0
- Impact to TWDP dominated by channel waveshape
 - Effect of IP is secondary
 - Scaling removes effect of actual power
- Pre-emphasized waveforms show advantage when scaled via OMA
 - But, from above, it may not be real with current method
- As expected, 14,5 EQ shows lower TWDP & IP scores than 10,3

TWDP & IP vs. waveform for pre-cursor channel; 14,5 EQ

TWDP & IP vs. waveform for pre-cursor channel; 10,3 EQ

Summary

- Pre-cursor channel most challenging for finite EQ
- Actual optical power has direct effect on slicer SNR
 - Scaling, if used, hides effect of actual power
- Waveshape has strong effect on SNR & TWDP
 - Effect of finite length IP is secondary
- Pre-emphasized waveforms show advantage when scaled via OMA
 - But, better TWDP_{OMA} does not result in better SNR or finite length IP for current method
 - Scaling with OMSD results in better tracking among SNR, TWDP, and IP
 - Current pre-emphasis not optimum for pre-cursor

Need other IP mechanisms to test

- EQ length being done
- Others readily implemented in TWDP-like code
 - Threshold
 - Timing
 - Rx bandwidth
- More?