IEEE P802.3at Task Force
Power Via MDI Enhancements
Midspan Adhoc
Midspan/Channel Requirements below 1MHz
New Material +Updates
May 7, 2008
Yair Darshan / Microsemi Corporation

Add names
New material- Ad Hoc meeting May 8, 2008

- BER tests results w/o BLW tracking function
- Finalizing Operating Bandwidth
- Final results of SCM with and w/o Midspan
- Worst case analysis results
- Evaluating the design margins in the system
- Midspan TF including test setup for compliance.
- Q&A
BER test sensitivity analysis

- **Setup:**
 - A standard 100BT system tested at 100BT w/o Midspan by using 100BT standard equipment generator.
 - Generator Transmitter inductance reduced to 350uH by adding external parallel inductance for total equivalent inductance of 350uH. Test equipment is not using BLW tracking.

- **Results:**
 - BER tests results showed ZERO lost packets with and w/o Midspan ALT A when BLW data were inserted.
 - Two Midspan devices were tested

- **Conclusions:**
 - The above results together with the other two UNH tests confirms that the addition of 3rd Inductance (that meets the requirements) in parallel is not affecting the data integrity under BLW conditions.
 - See transfer function derivation for understanding why it is not affecting the results from mathematical/physical point of view.
Finalizing Operating Bandwidth

- The reason for our work was the fact that 350uH was defined only for 100BT.
- BLW effects are relevant only for 100BT
- The 350uH was defined at lower frequency (100KHz) then the data bandwidth minimum frequency (1MHz) which imply that the relevancy of the operating worst case bandwidth under BLW conditions is not lower then 100KHz.
- Hence there is no need to address lower frequencies then 100KHz in the System Channel Model with or without Midspan according to the current specifications (ANSI X3.263-1995 (TP-PMD) subclause 9.1.7).
- As a result
 - Operating frequency range of TF: 100KHz<= f < 1MHz.
 - Confirmed by PHY experts (Dan Dove and others)
Analysis Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min</th>
<th>Max</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Inductance</td>
<td>uH</td>
<td>350</td>
<td></td>
<td>At Ibias maximum</td>
</tr>
<tr>
<td>2 Rwp</td>
<td>Ω</td>
<td>0.27</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>3 Rws</td>
<td>Ω</td>
<td>0.47</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>4 Connectors Rdc</td>
<td>Ω</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Total Channel Resistance</td>
<td>Ω</td>
<td></td>
<td>25</td>
<td>For 100m</td>
</tr>
<tr>
<td>6 100BT transmitter signal</td>
<td>Vpp</td>
<td>2</td>
<td></td>
<td>Data from Dan Dove</td>
</tr>
<tr>
<td>7 100BT receiver minimum signal to detect at worst case</td>
<td>Vpp</td>
<td>0.045</td>
<td></td>
<td>Data from Dan Dove</td>
</tr>
<tr>
<td>8 Source and Load Terminations</td>
<td>Ω</td>
<td>95</td>
<td>105</td>
<td>Data from Steve Sedio, Dan Dove and Randy Rannow</td>
</tr>
<tr>
<td>9 Test Equipment Gain Measurements errors</td>
<td>dB</td>
<td>0.1</td>
<td></td>
<td>Test equipment vendors to comment</td>
</tr>
<tr>
<td>10 Switch Design Margin</td>
<td>dB</td>
<td>>20</td>
<td></td>
<td>See detailed calculations in separate slide</td>
</tr>
<tr>
<td>11 Midspan Design Margin</td>
<td>dB</td>
<td><1</td>
<td></td>
<td>See detailed calculations in separate slide</td>
</tr>
</tbody>
</table>
Termination min/max value considerations

- Inputs from Steve Sedio, Dan Dove and Randy Rannow
- Source and load accuracy: +/-5%.
- The spec is driven by the Return Loss criteria. With an 85-110 ohm line impedance, we have to meet return loss.
- This limits the capacitance and resistance of the port. Typically some use 100ohms with +/-1%, but many IC vendors are implementing internal terminations which may not be as tightly specified.

Conclusions:
- Model: Using +/-5% is practical than using +/- 1%.
- Test setup: Use +/- 1% resistors.
Worst Case Analysis conditions

- Worst Case Gain Attenuation operating conditions in the System Channel Model w/o Midspan.
 - RL \rightarrow Min (RL=Termination at the Receiver side)
 - RS \rightarrow Max (RS=Termination at the Transmitter side)
 - Rwp, Rws \rightarrow Max (Primary and Secondary Transformer windings)
 - Connector \rightarrow Max (Connector contact resistance)
 - LM \rightarrow Min (=350uH, Happen at Ibias max.)
 - Rc \rightarrow Max (length=100m, Cable resistance)
 - Number of connectors \rightarrow Max=6, i.e. Channel= 4, Equipment= 2
Acceptable System Channel w.c Gain=Insertion Loss=Attenuation at 100MHz for 100m.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
<th>Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Transmitter Minimum output</td>
<td>Vpp/dB</td>
<td>2 / 6</td>
<td>Dan Dove and others</td>
<td></td>
</tr>
<tr>
<td>2 Channel Insertion Loss</td>
<td>dB</td>
<td>24</td>
<td>ANSI/TIA/EIA-568-B.1-2001</td>
<td></td>
</tr>
<tr>
<td>3 Source Load termination attenuation</td>
<td>dB</td>
<td>6.02</td>
<td>100/(100+100)=0.5=6.02dB</td>
<td></td>
</tr>
<tr>
<td>4 Data Transformer worst case insertion loss</td>
<td>dB</td>
<td>2</td>
<td>In reality the number is lower</td>
<td>Two Data transformers</td>
</tr>
<tr>
<td>5 Minimum signal at Receiver input</td>
<td>dB/Vpp</td>
<td>6-24-6.02-2=-25.97dB=0.05Vpp</td>
<td>Calculated based on the data in this table</td>
<td>Dan Dove: 0.045Vpp.</td>
</tr>
<tr>
<td>6 PHY to PHY minimum requirement to support 100BT at worst case conditions at 100MHz.</td>
<td>(V/V)/db</td>
<td>0.05/2=0.025=-32</td>
<td>Calculated based on the data in this table</td>
<td></td>
</tr>
</tbody>
</table>
Acceptable System Channel w.c Gain=Insertion Loss=Attenuation at 1MHz for 100m.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
<th>Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Transmitter Minimum output</td>
<td>Vpp/dB</td>
<td>2 / 6</td>
<td>Dan Dove</td>
<td></td>
</tr>
<tr>
<td>2 Channel Insertion Loss</td>
<td>dB</td>
<td>2.2</td>
<td>-ANSI/TIA/EIA-568-B.1-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ISO/IEC 11801:2002</td>
<td></td>
</tr>
<tr>
<td>3 Source Load termination attenuation</td>
<td>dB</td>
<td>6.02</td>
<td>100/(100+100)=0.5=6.02dB</td>
<td></td>
</tr>
<tr>
<td>4 Data Transformer worst case insertion loss</td>
<td>dB</td>
<td>~1</td>
<td>Two Data transformers</td>
<td></td>
</tr>
</tbody>
</table>
| 5 Minimum signal at Receiver input | Db/Vpp | 6-4-6.02-1=
-4.97dB =0.563Vpp | Calculated based on the data in this table |
| 6 PHY to PHY minimum requirement to support 100BT at worst case conditions at 1MHz. | (V/V)/dB | 0.563/2=0.281-11 | Calculated based on the data in this table |

Our interest is frequencies below 1MHz.

Hence we have **21dB design margin** (0.05Vpp @100MHz/0.563Vpp @ 1MHz)
SCM: without Midspan at 350uH, 100m. W.C analysis

- A compliant System Channel Model Gain w/o Midspan, must be higher than this curve per current standards and standard components specifications.

\[
\text{Gain} = -9.075 + 14.419 \cdot f - 41.781 \cdot f^2 + 45.759 \cdot f^3 - 18.075 \cdot f^4
\]

\[0.1\text{MHz} \leq f < 1\text{MHz}\]

Practical Limit at 100MHz*
SCM: with and without Midspan at 350uH, 100m. W.C analysis

Gain[dB]

C = A - B: Midspan effect

A: SCM w/o Midspan

B: SCM with Midspan

Operating Bandwidth

21 dB of Design Margin at 100KHz to <1MHz (*)

E: D at 1MHz. Gain/ Attenuation/ Insertion Loss = -11dB

D: SCM PHY to PHY minimum Gain/ Attenuation/ Insertion Loss requirements at 100MHz= -32dB

(*) Actually margin is higher BY ADDITIONAL 3dB due to the fact that Channel IL is ~1dB at f<1MHz and not 4dB
How to distribute the design margins that we have in the system at frequencies below 1MHz?

- At 100KHz, the system gain is:
 - ~-8dB w/o Midspan (-8.7dB at 1MHz, -7.5dB at 300KHz)
 - ~ -9dB with Midspan (-8.7dB at 1MHz, -7.5dB at 300KHz)
 - Which is practically negligible difference.

- The SCM is required by various system components specifications to work with gain as low as
 - -32dB at 100MHz
 - -11dB at 1MHz
 - Hence the PHY is capable to work with Gain as low as -32dB
 - But the inductance issue is relevant at the low frequency range which is 21dB higher then the worst case conditions.

- Since the Midspan has negligible effect on the SCM it is recommended to assign most of the Margin to the Switch according to the following ratio:
 - Midspan: 1dB max. as function of frequency from 100KHz to 1MHz
 - Switch: 20dB max. as function of frequency from 100KHz to 1MHz
Generating Midspan TF

Steps:
1. Generating System Model w/o Midspan, SCM. Done.
2. Generating System Model with Midspan ALT A, SCMM. Done.
3. Finding w.c analysis results and update the model. Done.
4. Finding Midspan TF=SCM -SCMM (Gain[db] vs Frequency plot)
5. Finding the best regression function structure to build the TF.
 (3, 4 and 5 order polynomial regression vs. Logarithmic regression were evaluated.)
6. Logarithmic structure showed best accuracy for the operating bandwidth under discussion (100KHz to 1MHz) for Midspan.
7. Adding margin function to cover Test Equipment errors and design.
8. Getting Final Equation.
Midspan TF and test setup for compliance.
Including w.c analysis

\[
\left\{-c + 37.46 \cdot \log_{10} \left(\frac{a \cdot f}{\sqrt{1 + b \cdot f^2}} \right) \right\}
\]

Updated Equation 33–14

\[
a = 22.41 \\
b = 520.48 \\
c = 0.1 \\
0.1MHz \leq f < 1MHz
\]

- \(V_{in}(f)\) is the Sine wave signal to be used to measure the Midspan TF.
- \(V_{bias}\) is the DC offset voltage to be superimposed on the Sine wave in order to generate \(I_{bias}\). \(I_{bias} = \text{TBD (8mA?)}\) + lun/2. lunb is specified in Table 33-9.
- \(V_{out}(f)\) is the Midspan response to \(V_{in}(f)\)
Q&A

Discussion