Maps of OMA, TDP and mean power

Piers Dawe Mellanox Technologies

Introduction

- Comments 140,141, 130, 129, 66, 70 and 18 relate to parameters average power, OMA, peak power and extinction ratio that are best discussed with the appropriate maps in view
- This presentation provides the maps and some discussion and recommendations

Map of OMA vs. TDP

- Allowed Tx TDP and OMA in 40GBASE-SR4 and, for 100GBASE-SR4, in P802.3bm D1.1 (to be confirmed)
- Transmitter is not given credit for TDP<0.9 dB

- A noiseless Tx with 1 ps would have TDP of 0.44 dB for $40 \mathrm{GBASE}-$ SR4 and 0.76 dB for 100GBASE-SR4 (from spreadsheet model: ISI at decision timing offsets)
- For 12 ps, this becomes 0.56 dB or 1.44 dB (illustrated)
- TDP is not likely to be below 1.5 dB
- Cutoff line for TDP credit needs revision

Minimum OMA recommendation

- We should raise the minimum OMA for lowTDP Tx until there is a moderate flat region at the bottom
- Comment 141 proposed increasing the minimum OMA from -7.1 dBm to -6.6 dBm
- It turns out that isn't enough
- We might as well use the same limit as 40GBASE-SR4: -5.6 dBm
- This makes operation and diagnostics of a mixed 40GBASE-SR4 / 100GBASE-SR4 network a little easier
- No cost foreseen because this still offers an 8.4 dB high setup window for any future lowTDP transmitter

Associated changes

- Comment 18 proposes for Table 95-6, 100GBASE-SR4 transmit characteristics:
- Insert note 'b' to spec line "Optical Modulation Amplitude (OMA), each lane (min)" : Even if the TDP $<0.9 \mathrm{~dB}$, the OMA (min) must exceed this value.
- Instead of 0.9 dB , use 2.4 dB
- The minimum average power on each lane would also be increased
- See next slide

Difference between lanes

- Transmitters that make use of the maximum TDP spec can be set up by aiming within the blue rectangle
- Difference between max and min is 6 dB - Enough for setup
- This would also be the difference between any two lanes at the transmitter
- The difference at the receiver could be 1.9 dB more, because the loss of the lanes may not be equal
- If the minimum attenuation is $0 \mathrm{~dB} / \mathrm{km}$
- Total $3-(-3)+1.9=7.9 \mathrm{~dB}$ not

$$
3-(-7.1)+1.9=12 \mathrm{~dB} \text { (from slide } 3 \text {) }
$$

- Use this to moderate the aggressor OMA in stressed receiver testing (comment 130)

Choosing minimum average input power at receiver

- Slide 4 shows that -5.6 dBm is a suitable Tx OMA minimum
- The draft -9.1 dBm minimum average launch power is unlikely to happen: it would need very high extinction ratio together with very low TDP
- -7.6 dBm, as in 40GBASE-SR4, looks suitable
- The minimum average input power at the receiver (TP3) would become -9.5 instead of -11 dBm
- Note: these maps assume that all ones and zeros are the same
- No distinction between "OMA extinction ratio" and "SONET extinction ratio"
- Peak power calculated as average power in ones - true peak can be higher because of overshoot

Revisiting minimum extinction ratio

- For a relatively slow transmitter, "SONET extinction ratio" (as in 10G/40G/100G Ethernet as well as SONET and SDH) is lower than "OMA extinction ratio"
- Current draft spec is 3 dB minimum. Comment 66 and 70 criticise this
- Circled regions would have a very high ratio of average power to OMA (DC photocurrent to modulated photocurrent) which would put an unnecessary burden on the receiver's DC cancellation feedback loop (or equivalent)
- However, it may be advisable to relax the spec moderately, to 2.5 dB
- Note: in the plot on the right, straight lines are drawn between calculated vertices. If the intermediate points were calculated, the lines would be slightly curved

Revisiting peak power limit

- 40GBASE-SR4 has a peak power limit of 4 dBm or 2.5 mW to protect the receiver from excessive photocurrent
- Without this, the peak power could be 4.37 dBm plus 0.8 ? dB or 20% ? higher because of overshoot, giving about 4.8 dBm or 3 mW
- A transmitter would have to have high overshoot AND a particular extinction ratio to create this peak power
- A maximum peak power spec protects the receiver at little to no inconvenience to the transmitter
- The limit should be a little higher than 40GBASE-SR4's 4 dBm
- Comment 129 proposes 4.2 dB , as illustrated

Signal detect

> Any signal to the left of the magenta line is not compliant. Signal detect should be allowed to flag it (SIGNAL_DETECT = FAIL)

- Signal detect must detect a compliant signal: one that is to the right of the magenta line, above the blue line, and 100GBASE-SR compliant (pattern).
- It doesn't have to check all these things
- Signal detect should be allowed to flag any non-compliant signal as non-compliant
- It doesn't have to do so, unless the average optical power at the receiver (TP3) is -30 dBm or less
- Comment 140:
- Change
- [(Optical power at TP3 >= average receive power, each lane (min) in Table 95-7)
- AND
- (compliant 100GBASE-R signal input)]
- to
- Compliant 100GBASE-R signal input at TP3 with OMA $>=-9 \mathrm{dBm}$ and average optical
- power >= average receive power, each lane (min) in Table 95-7
- (-9 would become -8.5 if another comment is accepted).

Thank You

