100m MMF reach objective Tx and Rx parameters working document

Post 13 ${ }^{\text {th }}$ December 2012 MMF ad hoc

- Recap of Tx and Rx tracker tables from $8^{\text {th }}$ Nov MMF ad hoc, with formulae for dependent parameters agreed on Dec $13^{\text {th }}$ MMF ad hoc

Transmitter characteristics (each lane)

Description	Type	Unit	Petrilla_02a_09	dawe_01a_0912	Table 86-6, Cl. 86	Fibre Channel	Proposed
Signal rate		GBd	$\begin{array}{r} 25.78125 \\ 100 \mathrm{ppm} \\ \hline \end{array}$			$\begin{gathered} \hline 28.05 \\ \text { 100ppm } \\ \hline \end{gathered}$	$\begin{array}{r} 25.78125 \\ 100 \mathrm{ppm} \\ \hline \end{array}$
Center wavelength	range	nm	TBD	840 to 860	840-860	840-860	840-860
RMS spectral width	max	nm	0.6	0.65 / 0.6	0.65	0.57	0.6
Average launch power	max	dBm	TBD	2.4	2.4		TBD (2.4)
Average launch power	min	dBm	TBD	-7.6	-7.6		TBD
Optical Modulation Amplitude (OMA)	max	dBm	TBD	3	3		TBD (3)
OMA	min	dBm	TBD	-5.6	-5.6		TBD
OMA at max TDP	min	dBm	-3.0	TBD	-3.0	-3.2	-3.0
Launch power in OMA minus TDP			TBD	-6.5	-6.5		TBD
Difference in launch power between any two lanes (OMA)	max	dB	TBD	TBD	4		TBD
Transmitter \& dispersion penalty (TDP) at target BER before FEC			TBD	TBD	3.5		TBD
Extinction ratio (min)		dB	4	3	3		3
$\mathrm{RIN}_{12} \mathrm{OMA}$ (max)		dB/Hz	-130	No spec	No spec	-129	no spec
Transmitter reflectance		dB	-12	No spec	none		no spec
Optical return loss tolerance (max)		dB	12	12	12		12
Encircled Flux			TBD	$\begin{aligned} & >=86 \% \text { at } 19 \mu \mathrm{~m}, \\ & <=30 \% \text { at } 4.5 \mu \mathrm{~m} \end{aligned}$	$\begin{array}{l\|} >86 \% \text { @ } 19 \mathrm{um}, \\ <30 \% \text { at } 4.5 \mathrm{um} \end{array}$		$\begin{aligned} & \geq 86 \% \text { @ } 19 \mathrm{um}, \\ & \leq 30 \% \text { at } 4.5 \mathrm{um} \\ & \hline \end{aligned}$
Transmitter eye mask definition $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3\}$, 510^{-5} hits/sample			TBD	$\begin{array}{\|c} \hline \text { Around 0.25/0.21, } \\ 0.36 / 0.32,0.45, \\ 0.27,0.35,0.4 \\ \hline \end{array}$	$\begin{gathered} \hline 0.23,0.34, \\ 0.43,0.27, \\ 0.35,0.4 \\ \hline \end{gathered}$	TBD	TBD
Average launch power of OFF transmitter	max	dBm	-30	-30	-30		-30

Receiver characteristics (each lane)

Description	Type	Unit	Petrilla_02a_0912 Link model values	dawe_01a	Table 86-6, Cl. 86	Fibre Channel Link model values	Proposed
Signal rate		GBd	$\begin{array}{r} 25.78125 \\ 100 p p m \\ \hline \end{array}$			28.05 100ppm	$\begin{array}{r} 25.78125 \\ 100 \mathrm{ppm} \\ \hline \end{array}$
Center wavelength	range	nm	840-860	840 to 860	840-860	840-860	840-860
Damage threshold	min	dB	TBD	+3.4	+3.4		TBD (3.4)
Average power at receiver	max	dBm	TBD	2.4	2.4		TBD (2.4)
Average power at receiver	min	dBm	TBD	-9.3/-9.5	-9.5		TBD
Optical Modulation Amplitude (OMA)	max	dBm	TBD	3	3		TBD (3)
Stressed receiver sensitivity in OMA	max	dBm	TBD	-5.4	-5.4		TBD
$\begin{aligned} & \text { Unstressed Rx sensitivity } \\ & \text { BER=5x10-5 , (BER=10-12) } \end{aligned}$	max	dBm	-10.5 (-7.8)	No spec	NA	-10.2 (-8.5)	No spec
SRS test conditions			TBD				TBD
Receiver reflectance		dB	-12	-12	-12		-12

- Note: Jitter tolerance test - starting point is scaled version of clause 86

Link and Cable Characteristic

Parameter	Unit	Petrilla_02a_0912	dawe_01a_0912	Proposed
Supported fiber types		OM4	OM4, OM3	OM4, OM3
Effective Modal Bandwidth	MHz*km *	$\mathbf{4 7 0 0}$	$\mathbf{4 7 0 0 , 2 0 0 0}$	4700,2000
Power Budget	dB	$\mathbf{7 . 3}^{1}$	$\mathbf{8 . 0}^{2}$ to $\mathbf{9 . 5}^{1}$	TBD (7.3)
Operating Range	m	$\mathbf{0 . 5 - 1 2 0}$	TBD (20 to 100)	TBD (120)
Channel insertion loss	dB	$\mathbf{1 . 9}$	$\mathbf{1 . 6}$ to $\mathbf{1 . 9}$	TBD

- Note 1: with KR4 FEC - power budget depends on required uncorrected BER and is for further study
- Note 2: without KR4 FEC, BER $=10^{-12}$

Update:

- Anslow_01a_1112, reviewed in the November $29^{\text {th }}$ MMF ad hoc, recommended that the BER at the PMA service interface should be less than 5×10^{-5}
- 100 m objective remaining TBDs $-13^{\text {th }}$ Dec

100 m Tx TBDs

Description (Tx)	Type	Unit	Name	Proposed Formula	Proposed
Average launch power	max	dBm	Txav max		TBD (2.4)
Average launch power	min	dBm	$\mathrm{Tx}_{\mathrm{av}, ~ \text { min }}$	$=\mathrm{Tx}_{\text {OMA min }}{ }^{-2}$	TBD
Optical Modulation Amplitude (OMA)	max	dBm	TX ${ }_{\text {OMA }}$ max	$=\mathrm{TX}_{\text {av max }}+0.6{ }^{\text {note } 1}$	TBD (3.0)
OMA	min	dBm	Tx $\mathrm{T}_{\text {OMA min }}$	$=$ Tx $_{\text {OMA@TDP }}-$ TDP +0.9 note 2	TBD
OMA at max TDP	min	dBm	Tx ${ }_{\text {OMA@TDP }}$		-3.0
Launch power in OMA minus TDP	min	dBm	TX $\mathrm{OMMA}_{\text {-TDP }}$	$=$ Tx $_{\text {OMA@TDP }}$ - TDP	TBD
Difference in launch power between any two lanes (OMA)	max	dB	Tx_ ΔP		TBD (4 or greater)
Transmitter \& dispersion penalty (TDP) at target BER before FEC	max	dB	TDP	link model output	TBD
Transmitter eye mask definition $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3\}$, 5 10-5 hits/sample					TBD

Note 1: Average power to OMA conversion factor for $E R=5.65 \mathrm{~dB}$ is 0.6 dB
Note 2: 802.3 ba used 0.9 dB for 40 G SR4, 0.8 dB for 40 G LR4 and 1 for 100G LR4

100m reach Rx TBDs

Description (Rx)	Type	Unit	Name	Proposed Formula	Proposed
Damage threshold	\min	dBm	P_{dma}	$=\mathrm{Tx}_{\mathrm{av} \text { max }}+1$	TBD (3.4)
Average power at receiver	\max	dBm	$R x_{\text {av_max }}$	$=T x_{\mathrm{av} _ \text {max }}$	TBD (2.4)
Average power at receiver	\min	dBm	$R x_{\text {av_min }}$	$=\mathrm{Tx}_{\mathrm{av} _ \text {min }}-\mathrm{IL}$	TBD
Optical Modulation Amplitude (OMA)	\max	dBm	$R x_{\text {inom__max }}$	$=\mathrm{Tx}_{\text {OMA_max }}$	TBD (3)
Stressed receiver sensitivity in OMA	\max	dBm	SRS	link model output	TBD
SRS test conditions					TBD

- Proposal: set max Rx average power to match max Tx average power value
- Proposal: set Rx min damage threshold to 1dB higher than max Rx average power

Link characteristic TBDs

Parameter	Unit	Name	Proposed Formula	Proposed
Power Budget	dB	PB	link model output	TBD (8.3) note 1,2
Operating Range	m		link model output	TBD (110) note 1
Channel insertion loss	dB		link model output	$\operatorname{TBD}(1.9)^{\text {note } 1}$

- Note 1: the values in brackets are updates from petrilla_03_1112, but are 'unapproved ' by the MMF ad hoc.
- Note 2: the power budget should be min Tx OMA at max TDP minus the unstressed receiver sensitivity at 5×10^{-5}

Back up

Tx average power, ER, OMA

- A max OMA of +3 dBm gives reasonable range of Tx OMA for max TDP
- Corresponds to $\mathrm{ER}=5.6 \mathrm{~dB}$ at average power of +2.4 dBm
- Add the ' 1 level correction' to the average power to calculate the optical 1 level
- Typically, VCSELs ER is set in the range of 4 dB to 7 dB range; for a max average power spec at +2.4 dBm , and max OMA of 3 dBm , the max 1 level power is +4.4 dBm

