Initial Measurements of System Background Noise in 10GBASE-T Systems

IEEE P802.3bq 40GBASE-T Task Force

Pete Cibula (Intel)
Dave Chalupsky (Intel)

March 19th, 2014
System Background Noise Measurement
Purpose & Goals

• Purpose – Characterize background noise in representative systems that are candidates for 40GBASE-T PHYs
 – Support the P802.3bq PHY Baseline Proposal ad hoc’s request for “…measurement results of background noise in systems, including broadband, stationary, and nonstationary narrowband sources.”
 – Why? System background noise power may be a significant factor in optimizing 40GBASE-T PHY designs

• Goals - This is a preliminary assessment intended to…
 – Describe a measurement methodology
 – Present initial measurement results based on that methodology
 – Stimulate further discussion of system noise measurement methodologies and ideas for further work in this area
Methodology Overview

• Establish the measurement noise floor
 – PSD of noise from 500kHz to 3GHz at reference plane
 • Common-mode termination on short S/FTP RJ45 patch cord

• Characterize system background noise
 – PHY active but with all transmitters disabled
 – Measure system noise at MDI
 • RJ45 connection
 – Measure system noise at PHY
 • As close to PHY pins as practically possible
 – Subtract measurement noise floor to highlight system-specific background noise

• Compare measurements to identify system noise sources and evaluate MDI-based vs. PHY-based results
Instrument Configuration

• Spectrum analyzer measurement of system background differential noise
 – Instrument configuration – raw power spectrum
 • Span: 0Hz to 3GHz
 • Attenuation: 0dB
 • Detector: Average
 • RBW & VBW: 30kHz, 30kHz
 • Averaging type: Log Power
 • No. averages: 2x
 – Instrument configuration – noise marker spectrum (non-user-configurable differences only)
 • RBW & VBW: 30kHz, 3kHz
 • Averaging type: RMS

• Raw power spectrum may mask low-level stationary sources
 – Noise marker power spectrum used for all system noise measurements

Power spectrum of common-mode termination on patch cable

Power spectrum with noise marker function enabled
Measurement Setup (Noise Floor)

Spectrum Analyzer

Single-ended to differential balun 300kHz – 3GHz

1x RJ45 to 8x 50ohm SMP breakout

Common-Mode Load Test Fixture

Coax SMA cables

Twisted pair patch cable

300kHz-3GHz Balun

2x SMA

RJ45/SMA Breakout

4 pairs 15cm CAT7

Load at each pair

50 ohms

50 ohms

(+)

(-)
Noise Floor Measurement

- Noise floor as measured at the MDI interface (RJ45 plug) is consistent across all 4 pairs
 - Average noise is approximately **-153.7 dBm/Hz**
 - Noise power (PSD integrated from 500kHz – 3GHz) is approximately **-58.5 dBm**

<table>
<thead>
<tr>
<th>Pair (Pins)</th>
<th>Average noise (dBm/Hz)</th>
<th>Noise Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1,2)</td>
<td>-153.67</td>
<td>-58.52</td>
</tr>
<tr>
<td>B (3,6)</td>
<td>-153.67</td>
<td>-58.52</td>
</tr>
<tr>
<td>C (4,5)</td>
<td>-153.67</td>
<td>-58.52</td>
</tr>
<tr>
<td>D (7,8)</td>
<td>-153.66</td>
<td>-58.52</td>
</tr>
</tbody>
</table>
Measurement Setup (MDI)

- **Spectrum Analyzer**
- **Single-ended to differential balun 300kHz – 3GHz**
- **1x RJ45 to 8x 50ohm SMP breakout**
- **DUTs in server All Tx disabled (MMD1.9, 0x0001)**

DUTs:
- DUT#1
- DUT#2
MDI Measurements, DUT#1

<table>
<thead>
<tr>
<th>Pair (Pins)</th>
<th>Average noise (dBm/Hz)</th>
<th>Noise Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1,2)</td>
<td>-151.91</td>
<td>-56.78</td>
</tr>
<tr>
<td>B (3,6)</td>
<td>-152.24</td>
<td>-57.10</td>
</tr>
<tr>
<td>C (4,5)</td>
<td>-152.08</td>
<td>-56.92</td>
</tr>
<tr>
<td>D (7,8)</td>
<td>-151.92</td>
<td>-56.80</td>
</tr>
</tbody>
</table>

• System background noise for DUT #1 as measured at the MDI interface (RJ45 jack) displays the following characteristics:
 - Broadband source(s) from 500kHz to ~1.2GHz
 - Narrowband source (800MHz, 1.6GHz)
 - Narrowband source (625MHz, 1.875GHz, 2.5GHz)

• Average noise (all pairs) is ~ **-152.0 dBm/Hz**
• Noise power (PSD integrated from 500kHz – 3GHz, all pairs) is ~ **-56.9 dBm**
• Note that subtracting the noise floor gives a better picture of system background noise characteristics above the noise floor
MDI Noise Measurements, DUT#1

Per-pair noise above noise floor

Some pairs appear to have unique sources (Pair A 600MHz; Pair D 1.6GHz - 2GHz)
MDI Measurements, DUT#2

<table>
<thead>
<tr>
<th>Pair (Pins)</th>
<th>Average noise (dBm/Hz)</th>
<th>Noise Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1,2)</td>
<td>-153.12</td>
<td>-57.34</td>
</tr>
<tr>
<td>B (3,6)</td>
<td>-153.57</td>
<td>-58.45</td>
</tr>
<tr>
<td>C (4,5)</td>
<td>-153.22</td>
<td>-58.07</td>
</tr>
<tr>
<td>D (7,8)</td>
<td>-153.44</td>
<td>-58.33</td>
</tr>
</tbody>
</table>

- System background noise for DUT #2 as measured at the MDI interface (RJ45 jack) displays the following characteristics:
 - Multiple source(s) from 500kHz to ~300MHz and between 400MHz and 600MHz
 - Unrelated (?) narrowband source at 500MHz
 - Narrowband source (800MHz, 1.6GHz)
 - Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ **-153.4 dBm/Hz**
- Noise power (PSD integrated from 500kHz – 3GHz, all pairs) is ~ **-58.0 dBm**
MDI Noise Measurements, DUT#2
Per-pair noise above noise floor

Unique sources (Pair A 839MHz; Pair D 1.5GHz – 1.7GHz); note more low frequency noise on A & C.
Measurement Setup (PHY)

DUT with all Tx disabled
Connections are post “cell phone” filter
Noise Measurements, PHY vs MDI

<table>
<thead>
<tr>
<th>Pair (Pins)</th>
<th>Average noise (dBm/Hz)</th>
<th>Noise Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (4,5) @ MDI</td>
<td>-153.22</td>
<td>-58.07</td>
</tr>
<tr>
<td>C (4,5) @ PHY</td>
<td>-153.19</td>
<td>-57.95</td>
</tr>
</tbody>
</table>

- Plots compare system background noise measured at the MDI with another measurement as close as practically possible to the PHY pins
 - It is difficult to instrument MDI trace pairs in real systems
 - Most PCB designs include few to no MDI trace debug features in order to preserve signal integrity
 - Disclaimer: “Adapter ports were harmed in the measuring of this data”

- More high-frequency signals are present before the MDI filter (an expected result)
- However, average noise and total noise power are comparable

![PSD at MDI & PHY](image1)

PSD at MDI & PHY after subtracting noise floor
MDI & PHY power above noise floor

There is some obvious and expected overlap between measured noise. The PHY measurement includes more signals/sources above 1GHz.
Results & Observations

• Average measured background noise for these two systems (10GBASE-T network adapters) is between -152dBm/Hz and -153dBm/Hz

• Average power for “easy” (at MDI) and “hard” (at PHY) measurements is about the same for the limited case presented.
 – Observed an expected “richer” spectrum – more peaks – before the on-board AFE “cell phone” filter.

• Specific background noise (assumed both broadband and stationary) varies across both MDI trace pairs and design implementations

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Average noise (dBm/Hz)</th>
<th>Noise Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUT#1</td>
<td>-152.0</td>
<td>-56.9</td>
</tr>
<tr>
<td>DUT#2</td>
<td>-153.4</td>
<td>-58.0</td>
</tr>
<tr>
<td>Pair at MDI</td>
<td>-153.2</td>
<td>-58.1</td>
</tr>
<tr>
<td>Pair at PHY</td>
<td>-153.2</td>
<td>-58.0</td>
</tr>
</tbody>
</table>
Conclusions

• Measurements of two 10GBASE-T implementations indicate an average system background noise level of approximately -152 dBm/Hz to -153 dBm/Hz
 – This is in line with the -150 dBm/Hz level discussed in the January 14, 2014 P8023bq PHY Baseline Proposal ad hoc meeting minutes

• While average system background noise levels are comparable…
 – Specific background noise levels vary with implementation
 – Background noise levels may also vary across MDI pairs
Next Steps/Further Investigation

• Seeking feedback from the PHY Baseline Proposal ad hoc regarding these results
 – Implications for PHY design (power, complexity)
 – Relative importance of the additional information observed in PHY-vs. MDI-based measurements of system background noise power
 • If larger data sets are requested, MDI-based measurement is easier

• Improvements in measurement techniques?
 – Example: Use noise floor extension features (may be manufacturer-specific)
 – Time-domain, FFT based measurements to get non-stationary sources (power-on or other power delivery transients, noise from memory/storage transactions)

• Measurements in other systems?
 – 10GBASE-T server LAN-on-motherboard? Switches?
Thank You!
External vs. in-situ Method

- Recalling that the *in situ* tool is designed for basic system debug/manufacturing test, we can conclude that it gives an interesting starting point.

- Comparing earlier *in situ* results to results obtained with bench equipment, an external spectrum analyzer (or other test & measurement tool) is better suited for background noise characterization, especially for 40GBASE-T frequencies of interest.

in situ results from internal tool PHY state unknown

Spectrum analyzer at MDI PHY in Tx disabled state

in situ test results were presented in the Channel Modeling ad hoc meeting held January 23, 2014. See cibula_3bq_channel_modeling_ad_hoc_initial_assessment_PCB_noise.pdf