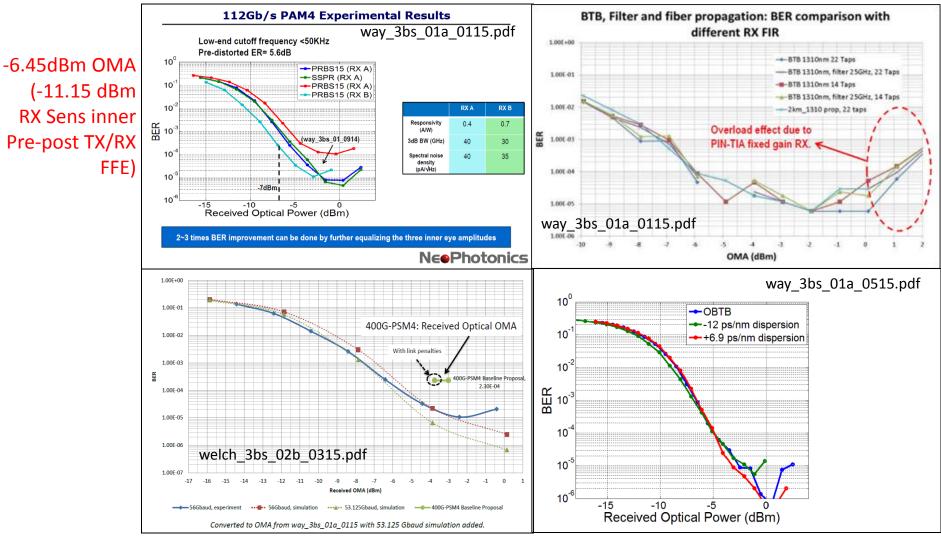
400GBASE-DR4 PMD Considerations for TX OMA reduction

Marco Mazzini - Cisco -

Background

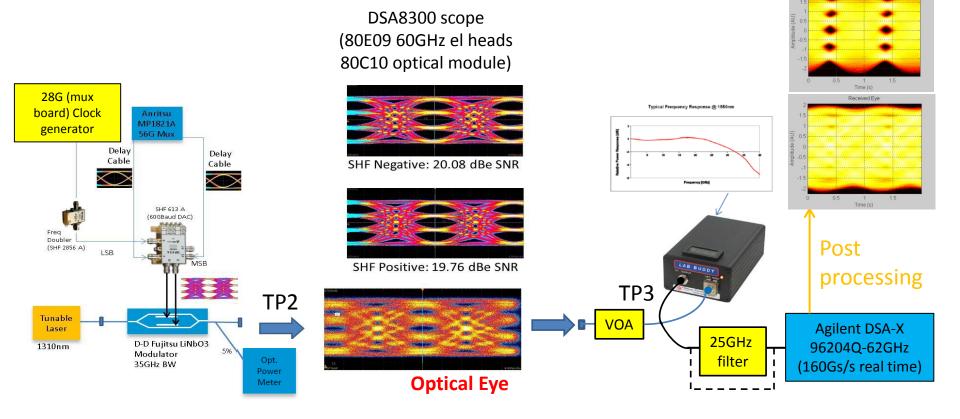

Starting from previous set of slides and <u>presentation</u> given at latest IEEE meeting, we've been investigating the possibility to relax the TX OMA _{outer} and tight RX sensitivity requirements.

Path for lowering TX power (TX OMA)

Different considerations for TX OMA reduction.

- 1. Updated budget presented into slide 9 already allows 0.6dB TX OMA relaxation, keeping <u>same</u> Draft 1.0 RX sensitivity (-9.25dBm OMA_{inner}).
 - MPI penalty relaxation (from 0.5 to 0.15dB)
 - PAM4 0.1dB implementation penalties relaxation (from 4.8 to 4.7dB).
 - Excess margin removal (0.15dB).
- 2. Our updated experimental results will show that:
 - Different RX equalizers already allow good sensitivity margins.
- 3. Considering RX technology evolutions, we kept included same simulation slide given into latest IEEE showing:
 - New generation of linear TIAs (lower NEP) will allow to improve even more RX sensitivity margins and noise floor.

56GBaud RX sensitivity – some previous results.

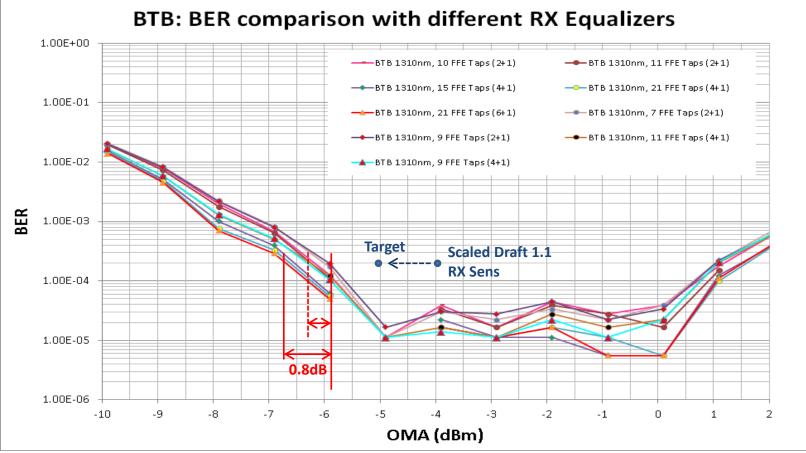


Considered 0.5dB OMA improvement calculated between 56 to 53.125GBaud.

No penalties due to lower BW and fiber propagation (2kms).

Up to -11.15dBm OMA_{inner} at 56GBaud (≈-11.65 at 53Gbaud) measured sensitivities from different experiments and TX technologies (> 2.5dB margin w/respect Draft1.1 - RX OMA sensitivity of -9.1dBm).

PAM 4 TX/RX : set-up with LiNb03 modulator.

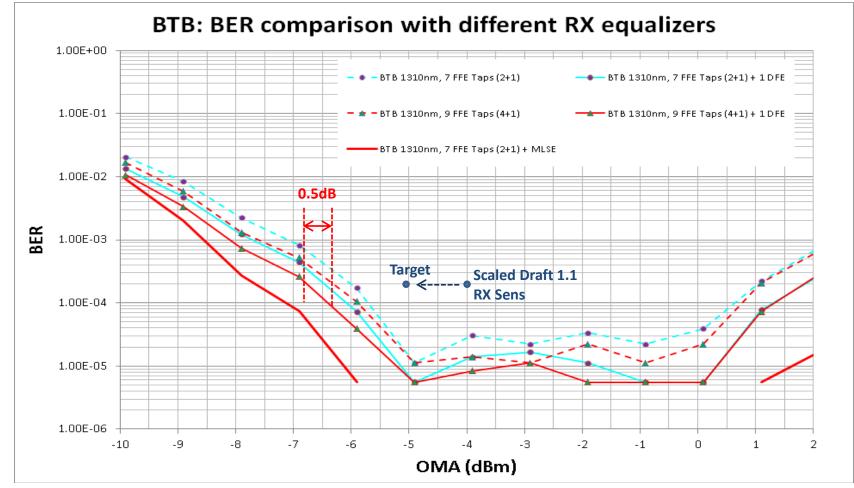


- SHF613A and 2856A provide a good electrical signal and allow dual-drive modulator to generate a 56GBaud signal.
- Clock generator was improved with respect previous tests (but limited to fixed 56GBaud).
- DSC-R409 (linear InGaAs receiver) has good frequency response but expect higher NEP (>30pa/VHz, no AGC) w/respect new generation of linear TIAs for 53GBaud application.

We expect experimental results with discrete components to be (at this stage) worsen than any integrated implementation because the amount of optical/electrical connections in the set-up and RX limitations.

Equalised Eve FIR onl

56GBaud sensitivity vs FFE equalizers

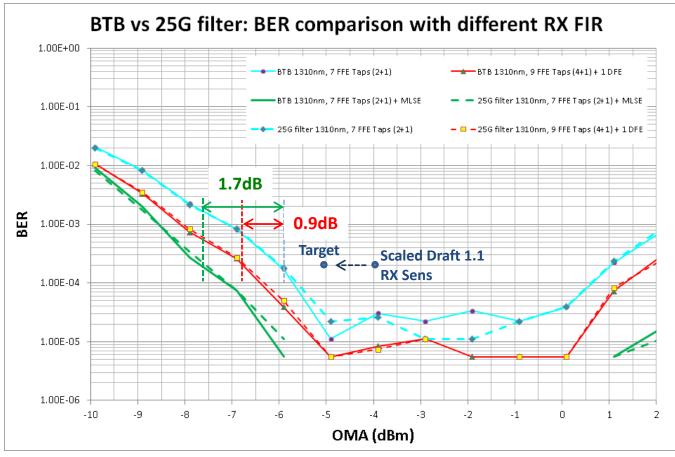

There's a good «flat» range between 0 to -5dBm range (@53G, -0.5 to -6dBm). Observed around 0.4dB penalty between 7 (2+1) and 9 (4+1) FFE (T/2) taps equalization. Other further 0.4dB improvement are achieved with more taps (15/21 T/2 spaced).

7 taps = -5.9 dBm RX sensitivity outer (-10.6 RX sensitivity OMA inner).

9 taps = -6.3 dBm outer (-11 dBm)

21 taps = -6.7 dBm outer (-11.4 dBm) -> ≈ -7.2 dBm (-11.9 dBm inner) RX sensitivity @53GBaud.

56GBaud sensitivity with different equalizer types


Observed same (≈0.5 dB) improvement including 1 DFE tap added to 7 and 9 FFE equalizers.

7 FFE + 1 DFE = -6.5 dBm RX sensitivity outer (-11.2 RX sensitivity OMA inner).

9 FFE + 1 DFE = -6.8 dBm outer (-11.5 dBm)

MLSE (3 bits) = -7.6 dBm outer (-12.3 dBm) -> ≈ -8.2 dBm (-12.8 dBm inner) RX sensitivity @53GBaud Note we're not saying that MLSE has to be implemented, just exploring current sensitivity limits.

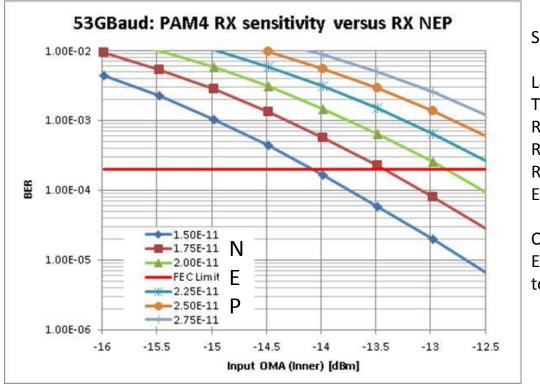
25GHz (RX filter) – results summary

25GHz BW filter used, to simulate more restricted BW components.

There's almost no penalty (0.1dB).

Measured 56Gbaud RX sensitivity, OMA

Condition	7 FFE	9 FFE	21 FFE	7 FFE / 1 DFE	9 FFE / 1 DFE	MLSE
BTB	-10.6	-11	-11.5	-11.2	-11.5	-12.3
25G Filter	-10.5				-11.4	-12.2


Calculated 53.125GBaud RX sensititivity, OMA

Condition	7 FFE	9 FFE	21 FFE	7 FFE / 1 DFE	9 FFE / 1 DFE	MLSE
ВТВ	-11.1	-11.5	-12	-11.7	-12	-12.8
25G Filter	-11				-11.9	-12.7

From resultsm -13dBm (-8.3dBm outer) is achievable (4dB margin w/respect current sensitivity specs).

53Gbaud RX sensitivity – simulations.

Currently there's >6.5dB offset between best 26GBaud results (<u>-18dBm</u>) and 56GBaud results, which seems not realistic when 56GBaud (53Gbaud) technology will become mature.

Simulations input conditions of:

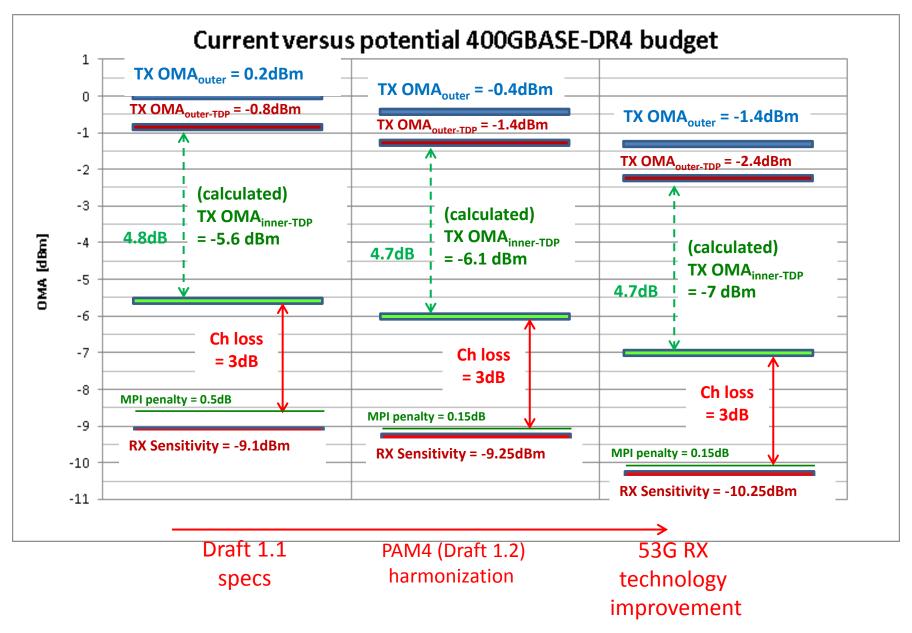
Laser RIN = -142 dB/Hz TX BW = 35 GHz RX BW = 35 GHz Responsivity = 0.7 A/W Residual ISI penalty <0.5dB Equivalent 7 FFE taps (T/2 spaced)

Overall (TIA, AGC, ADC) RX NEP (Noise Equivalent Power) swept between 15 to 27.5 pa/VHz.

NEP between 20-22.5 pa/VHz is considered feasible at 53GBaud by us \implies RX sensitivity target of around -12.75dBm OMA (Note: this value is \approx 1.5dB better then current (7 taps FFE) experiments results (still 5.5 dB worsen than what already experimentally shown at 26Gbaud).

Conclusions

We think there's room to enable lower TX power and get to TX OMA reduction (target -1.4 dBm) by tightening RX sensitivity.


The intention is still allow to keep a safe optical margin for development (2.5dB, considering 1dB ageing and 1dB voltage/temperature corners).

	Condition	7 FFE	9 FFE	21 FFE	7 FFE / 1 DFE	9 FFE / 1 DFE	MLSE	Calc 7 taps NEP 20-22.5 pavHz
	ВТВ	-11.1	-11.5	-12	-11.7	-12	-12.8	-12.75
	25G Filter	-11				-11.9	-12.7	
Margins	Draft 1.1 (-9.1 dBm)	2	2.4	2.9	2.6	2.9	3.7	3.65
(dB)	Target (-10.25 dBm)	0.85	1.25	1.75	1.45	1.75	2.55	2.5

Calculated (from 56G experiment) 53.125GBaud RX sensititivity, OMA

- Looking at simulations results and test results, this can be targeted considering to reduce OMA RX sensitivity to -10.25 dBm.
- We expect to see components becoming available in the near future, and plan to run further experiments.
- We are also looking forward for further contributions confirming our findings.

Potential path for 400GBASE-DR4 budget.

THANK YOU

Back-up slides

Discussion

- During the March 2015 P802.3bs TF meeting 50G PAM-4 RX Sens. (inner eye OMA) data was presented
 - Finisar RX Sens. = ~-13.5dBm (BER = 2e-4)

http://www.ieee802.org/3/bs/public/15_03/cole_3bs_02_0315.pdf#page=24

Huawei RX Sens. = ~-18dBm (BER = 2e-4)

http://www.ieee802.org/3/bs/public/15_03/stassar_3bs_01a_0315.pdf#page=5

Since the meeting, below deltas were identified:

Parameter	Finisar	Huawei
Noise Current	16.5pA/√HZ	15pA/√HZ
PD responsivity	0.5A/W	0.85A/W
Pattern	SSPR	PRBS15
GBaud	28	25.8

 With 0.8A/W PD responsivity, Finisar has since measured RX Sens. = ~-17dBm (BER = 2e-4)

18 - 20 May 2015

400GBASE-LR8/FR8 link budget 1 TX OMA_{outer} = 0dBm TX OMA_{outer} = 0.5dBm 0 -1 TX OMA_{outer - TDP} = -0.5dBm TX OMA_{outer – TDP} = -1dBm -2 -3 Allocation for OMA [dBm] modulation -4 penalty = 5dB-5 -6 (calc) TX OMA_{inner - TDP} = -5.5dBm (calc) TX OMA_{inner - TDP} = -6dBm -7 -8 **Channel loss = 4dB** Channel loss = 6.3dB -9 -10 **RX Sensitivity = -10dBm** -11 RX Sensitivity = -11.8dBm -12 400GBASE-FR8 400GBASE-LR8

Optical Margin

Description (Inner Eye)	400GBASE-FR8	400GBASE-LR8	Unit
Receiver Sensitivity (OMA), each lane, pre-DeMux (max)	-10.0	-11.8	dBm
DeMux Loss	3.0	3.0	dB
Cross-talk penalty	0.3	0.3	dB
Receiver Sensitivity (OMA), each lane, post-DeMux (max)	-13.3	-15.1	dBm
Receiver Sensitivity (OMA) single lane (typical measured)	-17	-17	dBm
Optical Margin	3.7	1.9	dB

18 - 20 May 2015

One option for changes to 400GBASE-DR4 characteristics.

Table 122–6—400GBASE-DR4 transmit characteristics

Description	Value	Unit]
Signaling rate, each lane (range)	53.125 ± 100 ppm	GBd	
Modulation format	PAM4	_	
Lane wavelength (range)	1304.5 to 1317.5	nm	
Side-mode suppression ratio (SMSR), (min)	30	dB	
Average launch power, each lane (max)	4	dBm	We should actually relax these too (link is broken)
Average launch power, each lane ^a (min)	-1.9 -3.4	dBm	 because distortions, maybe AGC would help).
Outer Optical Modulation Amplitude (OMA _{outer}), each lane (max)	4.2	dBm	/
Outer Optical Modulation Amplitude (OMA_{outer}), each lane $(\min)^{\rm b}$	0.2 -1.3	dBm	Our OMAouter target
Launch power in OMA _{outer} minus TDP, each lane (min)	-0.8 - 2.3	dBm	Our OMAouter minus TDP, each lane (min) target !
Transmitter and dispersion penalty (TDP), each lane (max)	2.5	dB	
Average launch power of OFF transmitter, each lane (max)	-30	dBm	
Extinction ratio, each lane (min)	5	dB	
RIN _{XX} OMA (max)	-142	dB/Hz	
Optical return loss tolerance (max)	TBD	dB	
Transmitter reflectance ^c (max)	-20 - 26	dB	
Transmitter eye mask definition	TBD		

^aAverage launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance. ^bEven if the TDP < 1 dB, the OMA_{outer} (min) and OMA_{inner}(min) must exceed these values.

^cTransmitter reflectance is defined looking into the transmitter.

Proposed changes to 400GBASE-DR4 characteristics.

Table 122-7-400GBASE-DR4 receive characteristics

Description	Value	Unit	
Signaling rate, each lane (range)	53.125 ± 100 ppm	GBd	
Modulation format	PAM4	_	
Lane wavelengths (range)	1304.5 to 1317.5	nm	
Damage threshold ^a , each lane (min)	6.5	dBm	
Average receive power, each lane (max)	4	dBm	\rightarrow We should actually relax these too (link is brown by the second sec
Average receive power, each lane ^b (min)	-4.9 -6.4	dBm	because distortions, maybe AGC would help)
Receive power, each lane (OMA _{outer}) (max)	4.2	dBm	
Receiver reflectance (max)	-26	dB	
Receiver sensitivity (OMA _{inner}), each lane ^c (max)	-9.1 - 10.25	dBm	Receiver sensitivity (OMA _{inner}) proposed change
Stressed receiver sensitivity (OMA_{inner}), each lane d (max)	TBD	dBm	[= -5.55dBm OMA _{outer}]
Conditions of stressed receiver sensitivity test:			
Condition 1 ^e	TBD		
Condition 2 ^e	TBD		1

^aThe receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level. The receiver does not have to operate correctly at this input power.

^bAverage receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance. Receiver sensitivity (OMA_{inner}), each lane (max) is informative.

^dMeasured with conformance test signal at TP3 (see 122.8.10) for the BER specified in 122.1.1.

^eCondition 1 and condition 2 are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Table 122-8-400GBASE-DR4 illustrative link power budget

Parameter	Value	Unit
Power budget (for max TDP)	6	dB
Operating distance	500	m
Channel insertion loss ^a	³ 2.75	dB
Maximum discrete reflectance	-35	dB
Allocation for penalties ^b (for max TDP)	3	dB
Additional insertion loss allowed	0	dB

^aThe channel insertion loss is calculated using the maximum distance specified in Table 122–5 and cabled optical fiber attenuation of 0.5 dB/km at 1304.5 nm plus an allocation for connection and splice loss given in 122.11.2.1.

^bLink penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Proposed changes to receive

and link budget characteristics are in red.

Include MPI penalty into allocation into max TDP penalties