Improved extinction ratio specifications

Piers Dawe Mellanox

Introduction

- To allow a variety of transmitter technologies for good performance, low power and cost, the extinction ratio spec should be reduced to as low as reasonable while protecting the link and the receiver
 - In March, comments bs 127,148 and 151, and cd 138, 200, 139 and 211, proposed 3 dB or 3.5 dB ER and were referred for further study and consensus building
- Recent presentations in P802.3cd ad hoc and P802.3bs SMF ad hoc explain the motivation
- <u>http://ieee802.org/3/bs/public/adhoc/smf/17_04_25/dawe_01_0417_smf.pdf</u>
- <u>http://ieee802.org/3/cd/public/adhoc/archive/dawe_042617_3cd_adhoc-v3.pdf</u>
- <u>http://ieee802.org/3/cd/public/adhoc/archive/dawe_051017_3cd_adhoc.pdf</u>
- This presentation shows how this can work for the six SMF PMD types in P802.3bs

P802.3bs May 2017

Motivation

- Want to avoid excluding some transmitter technologies from future implementations
 - Directly modulated lasers (DML)
 - Well-known benefit of lower extinction ratio: less distortion in the eye
 - Electro-absorption modulators (EAM)
 - e.g. silicon photonics EAM
 - Transmitter can be shorter (faster, e.g. 10 GHz more bandwidth) and/or driven with less volts (power, cost), and deliver more output OMA

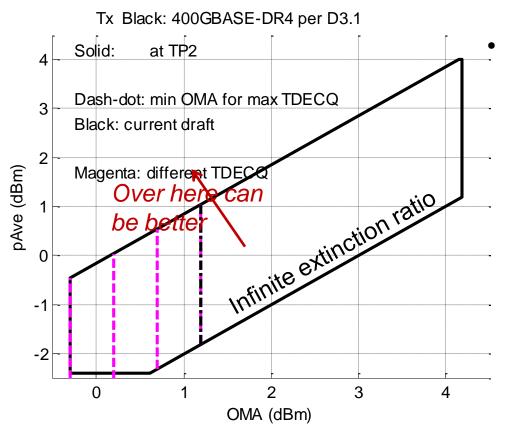
Limitations

- Multi-path interference (MPI) is affected by the extinction ratio
- Reducing the extinction ratio doesn't hurt a PAM4 link budget much, because the extinction ratio is low anyway for the upper eye
- But the small difference can be quantified
 - <u>http://ieee802.org/3/bs/public/adhoc/smf/16_01_07/king_01a_0116</u>
 <u>smf.pdf</u>
 - http://ieee802.org/3/bs/public/adhoc/smf/16_01_07/king_02a_0116 smf.7z

200GBASE-DR4 and 400GBASE-DR4

- Because 200GBASE-DR4 and 400GBASE-DR4 work over parallel-fibre cable plant, which has low reflection connectors, the expected multipath interference penalty is so small that the budget is unchanged
 - For 200GBASE-DR4, Table 121–15, Maximum value of each discrete reflectance
 - For 400GBASE-DR4, Table 124–13, Maximum value of each discrete reflectance
 - Both say:

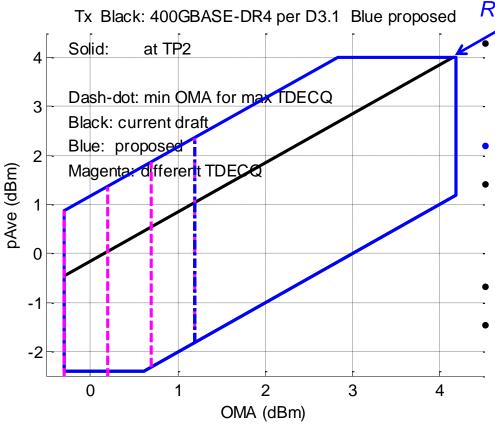
Number of discrete reflectances above –55 dB


Maximum value for each discrete reflectance

- 1 –37 dB
- 2 –42 dB
- 4 –45 dB
- 6 –47 dB
- 8 –48 dB
- 10 –49 dB

Transmitter setup map: 400GBASE-DR4

Black polygon: Tx spec in D3.1,


with 5 dB min. extinction ratio

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

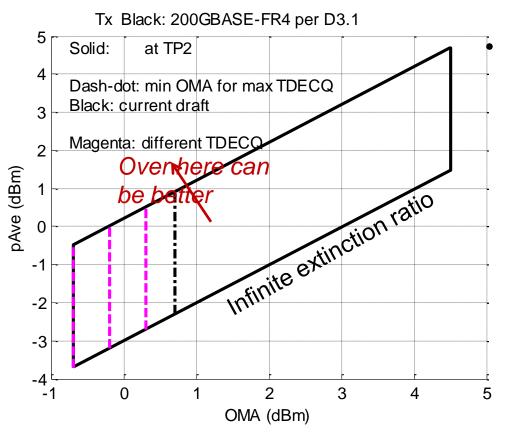
P802.3bs May 2017

400GBASE-DR4 setup map: proposal

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

P802.3bs May 2017

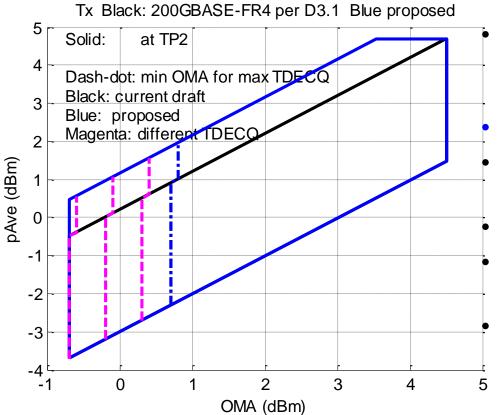
Improved extinction ratio specifications


Receiver overload is unchanged for all PMDs

- Black polygon (partly hidden under blue one): Tx spec in D3.1, with 5 dB min. extinction ratio
- Blue polygon: proposal: 3.5 dB
- The expected multipath interference penalty is so small that the budget is unchanged
- Tx spec becomes easier
- Channel, connectors and receivers don't change

Transmitter setup map: 200GBASE-FR4

Black polygon: Tx spec in D3.1,


with 4.5 dB min. extinction ratio

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

P802.3bs May 2017

200GBASE-FR4 setup map: one option

• A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio Black polygon (partly hidden under blue one): Tx spec in D3.1, with 4.5 dB min. extinction ratio

Blue polygon: proposal: 3.5 dB

- Including an extra 0.1 dB for multipath interference penalty
- Tx spec becomes easier

Channel, connectors and receivers don't change

Other options include:

- Improve Rx sensitivity, and stressed sensitivity, and increase budget, by
 0.1 dB for any extinction ratio
- Tighten Tx minimum OMA (and minimum average power if wished), and increase budget, by 0.1 dB for any extinction ratio
- Include MPI in TDECQ

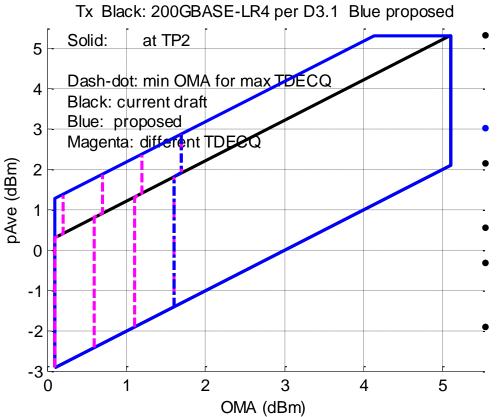
P802.3bs May 2017


200GBASE-FR4 and 400GBASE-FR8

- The extinction ratio and MPI considerations are the same for 200GBASE-FR4 and 400GBASE-FR8: same extinction ratio limit and discrete reflectance (Table 122–19)
 - This table might be re-optimised, about the pivot of 4 connectors at -35 dB
- However, the balance of transmitter and receiver difficulty may differ between 200GBASE-FR4 and 400GBASE-FR8

Transmitter setup map: 200GBASE-LR4

Black polygon: Tx spec in D3.1,


with 4.5 dB min. extinction ratio

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

P802.3bs May 2017

200GBASE-LR4 setup map: one option

• A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

- Black polygon (partly hidden under blue one): Tx spec in D3.1, with 4.5 dB min. extinction ratio
- Blue polygon: proposal: 3.5 dB
- Including an extra 0.1 dB for multipath interference penalty
- Tx spec becomes easier
- Channel, connectors and receivers don't change

Other options include:

- Improve Rx sensitivity, and stressed sensitivity, and increase budget, by
 0.1 dB for any extinction ratio
- Tighten Tx minimum OMA (and minimum average power if wished), and increase budget, by 0.1 dB for any extinction ratio
- Include MPI in TDECQ

P802.3bs May 2017

200GBASE-LR4 and 400GBASE-LR8

- The extinction ratio and MPI considerations are the same for 200GBASE-LR4 and 400GBASE-LR8: same extinction ratio limit and discrete reflectance (Table 122–19)
 - This table might be re-optimised, about the pivot of 6 connectors at -35 dB
- However, the balance of transmitter and receiver difficulty may differ between 200GBASE-LR4 and 400GBASE-LR8

Conclusion

• A lower extinction ratio limit should be applied to all SMF PMDs in P802.3bs

• Looking forward to reduced cost and power

Backup

Table 122-19, for 200GBASE-FR4, 200GBASE-LR4, 400GBASE-FR8, and 400GBASE-LR8

Number of discrete reflectances above –55 dB	Maximum value for each discrete reflectance	
	200GBASE-FR4 or 400GBASE-FR8	200GBASE-LR4 or 400GBASE-LR8
1	–25 dB	–22 dB
2	-31 dB	–29 dB
4	–35 dB	–33 dB
6	–38 dB	–35 dB
8	–39 dB	-37 dB
10	–40 dB	–38 dB