

ZTE
Tomorrow never waits

IEEE P802.3ca Task Force Meeting, September 2017 Charlotte, NC, USA

Yong Guo, Junwen Zhang, Zheng Liu, Tong Wang, Jizheng Guo, Yongjia Yin, and Jun Shan Wey

Motivation

- Both RS and LDPC codes providing higher coding gain have been proposed to close the optical power budget gap
 - Vanveen_3ca_1_0317: RS(1023, 847), OH=17.2%; RS(2047,1739), OH=15%
 - laubach 3ca 1 0517: LDPC(18493, 15677), code rate=84.7%
 - Jingyinrong_3ca_2_0717: LDPC 22*125*128, code rate=82.4%; LDPC 13*76*256, code rate=84.8%
- Concerns about LDPC code
 - Power budget gap
 - Error floor issue
 - CDR loss of lock
- If we can close the power budget gap using RS code, is it worth the risk of committing to LDPC for 25G?

What is the size of optical power budget gap?

- Size of the optical power budget gap will impact which FEC code should be used
 - 0.5 dB: harstead 3ca 5 0117, johnson 3ca 2 0117
 - 1.5 dB: guo 3ca 2 0517
 - 1-2 dB: laubach 3ca 1 0517
- Analysis in laubach_3ca_1_0517
 - Gap~ 1dB: RS with longer code word (e.g., 1KB) could work
 - Gap~ 2dB: LDPC (e.g., 2KB) could be useful

Improvement of transceivers to close the gap

- Minimum 25G Tx optical power by 2020:
 - Yields and cost will be improved by the time of commercialization

	Cooled DML	Uncooled DML	EML
liudekun_3ca_4_0517	> 4 dBm	> 4 dBm	3-4 dBm
harstead_3ca_1a_0716	7 dBm	6.5 dBm	5 dBm

- Receiver sensitivity
 - Starting point is -24.2 dBm at 1E-3 and 8 dB ER (harstead_3ca_4_0117)
 - Potentially -28dBm (pan_3ca_1_0916, pan_3ca_1_0916)
 - Further improvement proposals see guo_3ca_1_0917

Loss budget is 28.2 dB with Tx power at +4 dBm and Rx sensitivity at -24.2 dBm → ~ 2 dB gap in optical power budget

Error floor issue in LDPC

- Error-floor is a challenging problem of LDPC and is still an open question
 - Error floor of LDPC codes is dominated by sub-structures in the Tanner graph. Girth, stopping sets, trapping sets, and decoding algorithm, can significantly affect error floor of LDPC
 - Error floor could be anywhere between 1E-2 to 1E-12: an open issue to clarify
- Only one existing proposal has shown no error floor above 1E-14:
 - laubach_3ca_1_0517 shows no results below 1E-12
 - zhao_3ca_1_0517 shows no error floor above 1E-14
- Simulation results are not sufficient for error floor estimation, because no theoretical tool is available to accurately predict the error floor of LDPC codes
- FPGA-based verification is needed to verify LDPC error floor

Burst mode CDR loss of lock not yet confirmed

Test Setup

- TX: 1310nm EML with ER: 8dB@PRBS31
- RX: 25G ONU RX (APD ROSA) with CDR
- CDR Loop Bandwidth is set to 10MHz or 20MHz

Test Result

- 25G CDR can work in the lock state at BER 1E-2 with loop bandwidth of 10MHz and 20MHz
- 25G CDR loses the lock state at BER below 3E-2

Summay and Proposal

- There are still several FEC questions to be answered before making a code selection
 - Error floor below 1E-12 is not verified in hardware (FPGA)
 - Burst-mode operation of LDPC code is not yet proven. CDR is verified only in continuous mode
 - 2-5x increase in complexity comparing to RS code
- Power budget gap can be closed optically to within the range for RS codes
- We propose to
 - Use RS code for 25G-EPON (power budget proposal see guo_3ca_1_0917)
 - Further study of LDPC code for 50G/100G-EPON

Thank you

