PR30 Link Budget Considerations from a Component Perspective

K.P. Jackson, Frank Sanada, Hao Feng, T. Takagi, N. Tanaka, D. Umeda, T. Funada

IEEE P802.3ca 100G-EPON Task Force meeting, New Orleans

Outline / Introduction

■ Previous presentations explored link budgets given various component capabilities

■ 100G, PR30 most challenging
■ This presentation looks at a common specification (25G/50G/100G) and indicates where further component assessment is needed to confirm specification values.

- Emphasis on low-cost ONU

Schematics diagram of 100G-EPON network architecture

Total loss: 34.5 dB [EML] or 35.0 dB [DML] loss (tentative)

	O-mux	O-demux	Diplexer	ODN	TDP
Loss Penalty $[d B]$	1.5 (tentative)	1.5 (tentative)	0.5 (tentative)	29(PR30)	$1.5(\mathrm{EML}), 2.0(\mathrm{DML})$ (tentative)

Vendor input survey result of laser

25G transmitter launch power and ER: responses

AVPmin (dBm)	number	mean	σ
EML	6	4.5	0.8
cooled DML	8	7.0	1.2
uncooled DML	6	4.7	1.5
ER (dB)			
EML	6	7.5	0.8
cooled DML	8	5.3	0.9
uncooled DML	6	4.7	1.0

When a range was given (maximum 1 dB), the higher value was chosen.
\rightarrow Inputs to be used in harstead_3ca_2_0716

Ref. harstead_3ca_1a_0716
\square
Vendor input survey results are good reference to consider 100G-EPON link budget.

25G APD sensitivity estimation (ONU)

Derivation of 25G PR30 receiver sensitivity specification, ONU

- Assume: OLT EML, with $\mathrm{ER}=8 \mathrm{~dB}$ per harstead_3ca_1a_0516
- Assume no FEC improvement over 10 G EPON
- Assume no additional diplexer loss compared to 10G EPON (wavelength plan dependent)
(5) ONU OMA Rx Sens ${ }_{\text {max }}=-22.59 \mathrm{dBm}$ ONU Rx Sens $\max ^{=-24.21 \mathrm{dBm} @ E R=8 \mathrm{~dB}, \mathrm{BER}=10^{-3} \mathrm{C}}$
4. 25 G APD performance margin $=1 \mathrm{~dB}$
(1) 10 G EPON OMA

Rx Sens $_{\text {max }}=-26.59 \mathrm{dBm}$ (802.3 Table 75-11; $\left.E R=9 \mathrm{~dB}, \mathrm{BER}=10^{-3}\right)$

6
(slide 3)
(2) $2019 \mathrm{Rx}^{2}$ Sens $_{\text {max }}$
improvement $=1 \mathrm{~dB}$
(harstead_3ca_1a_0516)
(2) 2019 Rx Sens $_{\max }$
improvement $=1 \mathrm{~dB}$
(harstead_3ca_1a_0516)

Ref. harstead_3ca_4_0117

SUMITOMO ELECTRIC GROUP

25G APD sensitivity estimation (OLT)

Derivation of 25G PR30 receiver sensitivity specification, OLT

- Assume: ONU DML, with ER=6 dB per harstead_3ca_1a_0516.
- Assume no FEC improvement over 10G EPON
- With adjustment to the OMA method, a spec could be written that would also allow for an EML with lower power and higher ER (risk mitigation).
(5) OLT OMA Rx Sens max $=-23.22 \mathrm{dBm}$

OLT Rx Sens $\max ^{\approx}=-24 \mathrm{dBm} @ \mathrm{ER}=6 \mathrm{~dB}, \mathrm{BER}=10^{-3}$
(4) 25G APD performance margin $=1 \mathrm{~dB}$ (slide 3)
(2) 2019 Rx Sens max $_{\text {improvement }}=1 \mathrm{~dB}$ (harstead_3ca_1a_0516, assume can also be applied to $\overline{O L T}$)
(1) $10 G$ EPON OMA

Rx Sens ${ }_{\text {max }}=-27.22 \mathrm{dBm}$ (802.3 Table 75-6; $\left.E R=6 \mathrm{~dB}, \mathrm{BER}=10^{-3}\right)$

8

Public

O-Demux Integrated 25G x 4ch APD ROSA

FEATURES

- LAN-WDM 4 2λ optical DMUX
- Four channel/limiting ROSA
- InP/InGaAs 25G APD
- SiGe Quad TIA
- Common integrated ROSA packaging

Common design

Prototype evaluation result

Equivalent $\rightarrow-25.8 \mathrm{dBm}$, avg $(E R=6 \mathrm{~dB})$ 0.75 dB (O-Demux) $\rightarrow-26.55 \mathrm{dBm}$, avg

SUMITOMO ELECTRIC GROUP

100G EPON (PR30)

 (Loss budget from Laser to Rx)

Need optical amplifier to realize 100G-EPON system

100G EPON (PR30)

 (Loss budget from Laser to Rx)

Need optical amplifier to realize 100G-EPON system

50G EPON (PR30)
 (Loss budget from Laser to Rx)

```
OLT (DS)
```

Loss Budget

ONU (US)

APD/PIN + SOA
(-27.5dBm, ER 6dB)

5.3 dB short

*Module level APD sensitivity concern: -23.55 to -22.55 dBm , avg (ER=6dB)

Need optical amplifier to realize 100G-EPON system

SUMITOMO ELECTRIC GROUP

25G EPON (PR30)

(Loss budget from Laser to Rx)

```
OLT (DS)
```

Loss Budget

ONU (US)

*Module level APD sensitivity concern: -23.55 to $-22.55 \mathrm{dBm}, \operatorname{avg}(E R=6 d B)$

Need optical amplifier to realize 100G-EPON system

Device technology: Minimizing total cost and risk?

	Downstream	Upstream	
OLT	$\begin{aligned} & \text { Tx) } \\ & \text { EML+SOA } \\ & \text { (SOA integrated EML) } \end{aligned}$	$\begin{aligned} & \mathrm{Rx}) \\ & \text { SOA+APD } \\ & \text { SOA+PIN-PD } \end{aligned}$	Pre-Amp SOA options at OLT: 1. One discrete SOA for four wavelengths. 2. Four SOA integrated/APD.
ONU	$\begin{aligned} & \mathrm{Rx}) \\ & \mathrm{APD} \end{aligned}$	$\begin{aligned} & \text { Tx) } \\ & \text { DML(cooled) } \end{aligned}$	

SEDI's SOA integrated EML for 10G-PON

Representative Characteristics

$\mathrm{T}_{\mathrm{LD}}=40 \mathrm{deg} . \mathrm{C}, 9.95 \mathrm{Gbit} / \mathrm{s}, \mathrm{PRBS}^{31}-1$
$\mathrm{I}_{\mathrm{LD}}=110 \mathrm{~mA}, \mathrm{I}_{\mathrm{SOA}}=256 \mathrm{~mA}, \mathrm{Vo}=-0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{pp}}=1.5 \mathrm{~V}$

This technology could be applied to 25G EML

Device Innovations USA

Example of SOA saturation power performance

- Gain Characteristics

Saturation output power

Tset:25deg.C Isoa:130mA

$>10 \mathrm{dBm}$ saturation power doable, optimizing SOA parameter, higher saturation power could be obtained.

SOA + PIN sensitivity (alternative to APD, olt)

Sensitivities of SOA + PIN-PD Rx

- PIN-PD ROSA and DML TOSA are the same samples used in tanaka_3ca_1116.
- SOA gain of sensitivity is 10.4dB@BER:1e-3 under Isoa:130mA and Tsoa:40degC with LAN-WDM filter of LR4/ER4.


```
SOA+PIN could be solution.
```


SOA + APD (ref: liu_3ca_1_0117)

- Compared with 25G APD, only using SOA as pre-amp., Rx. Sen. increased 2.2 dB .
- Using SOA and CWDM filter, Rx. Sen. increased 4.6 dB .
- Using SOA and LAN-WDM filter, Rx. Sen. increased 6.1 dB .
- Using SOA and DWDM filter, Rx. Sen. increased 6.6 dB .

Optical power @BER=1E-3		
	After SoA	After Filter
CWDM	1.8 dBm	-8.1 dBm
LAN-WDM	1.8 dBm	-5.9 dBm
DWDM	1.8 dBm	-18.9 dBm

	25G APD	w. SOA	w. SOA+CWDM filter $(16.8 \mathrm{~nm})$	w. SOA+LAN-WDM filter $(4.09 \mathrm{~nm})$	w. SOA+DWDM filter $(0.9 \mathrm{~nm})$
Rx. Sen. $(@ B E R=1 E-3)$	-27 dBm	-29.2 dBm	-31.6 dBm	-33.1 dBm	-33.6 dBm

SOA+APD could be solution.

Summary

1. Increase EML/DML output power
> SOA integrated EML
$>$ SEDI has 10 G SOA integrated EML, min. output power $>+10.5 \mathrm{dBm}$.
$>$ Possible non-linearity effect should be evaluated.
$>\quad$ Add one or multiple discrete booster SOAs
> Higher saturation output power characteristics is required.
(especially in the case 4ch per 1 SOA. should be evaluated)
> Possible non-linearity effect should be evaluated.
2. Improve APD sensitivity*
> Add one or multiple optical preamp (SOA).
$>\quad$ in the case of 4 ch per 1 SOA , impact of each $\mathrm{ch}(\lambda)$ imbalance should be evaluated.
(see next page)
> OLT side needs to confirm burst mode operation.
> APD + SOA: Dynamic range and ASE penalty.
> PIN-PD + SOA: Dynamic range and sensitivity.
*25G APD sensitivity needs to be confirmed, because 25G APD is NOT mature in the field yet. We should consider additional margin for the viable EPON specification.

- Thank You! -

Optically Clear • Wirelessly Agile • Powerfully Reliable

