

# 25G power budget: 2<sup>nd</sup> iteration, downstream

Ed Harstead, member Fixed Networks CTO Dora van Veen, Vincent Houtsma, Bell Labs

July 2016

1 Public

# 10G EPON PR30 downstream (from harstead\_3ca\_1a\_0516.pdf)

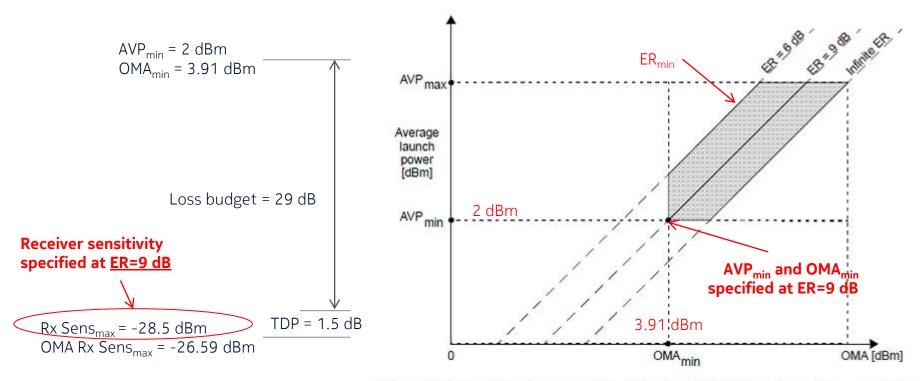



Figure 75-4—Graphical representation of region of PR-D type transmitter compliance

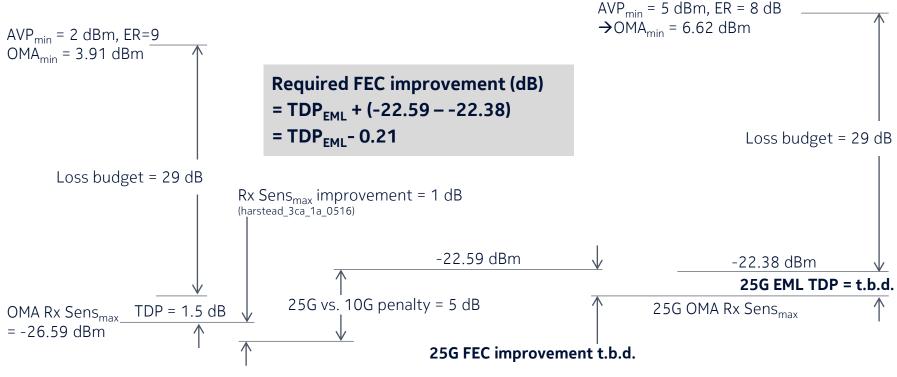
# Preliminary values for 25G EPON AVP<sub>min</sub> and ER

Summary of vendor input on 25G EML and DML performance (harstead\_3ca\_1\_0716)

| AVPmin (dBm) | number | mean | σ   |
|--------------|--------|------|-----|
| EML          | 6      | 4.5  | 0.8 |
| cooled DML   | 8      | 7.0  | 1.2 |
| uncooled DML | 6      | 4.7  | 1.5 |
| ER (dB)      |        |      |     |
| EML          | 6      | 7.5  | 0.8 |
| cooled DML   | 8      | 5.3  | 0.9 |
| uncooled DML | 6      | 4.7  | 1.0 |

(mostly conservative values)

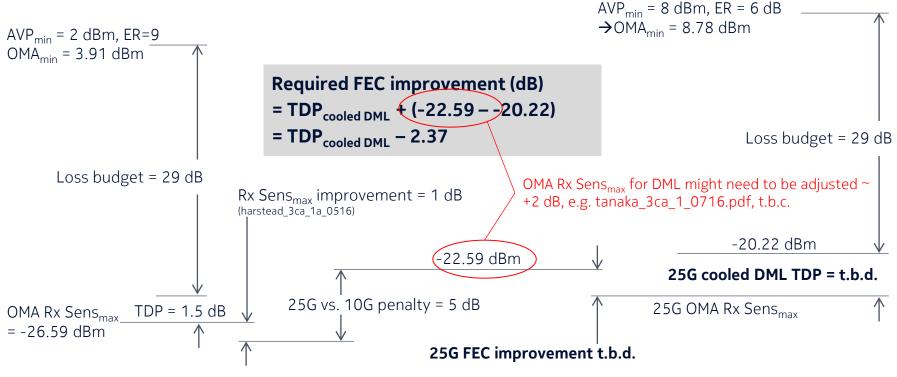
• Proposed values, mean + one  $\sigma$ , rounded to nearest dB.


|              | AVP <sub>min</sub> (dBm) | ER (dB) | OMA <sub>min</sub> (dBm) |
|--------------|--------------------------|---------|--------------------------|
| EML          | 5                        | 8       | 6.62                     |
| cooled DML   | 8                        | 6       | 8.78                     |
| uncooled DML | 6                        | 6       | 6.78                     |

➤ Note: the cooled DML has the best OMA performance, followed by the EML and uncooled DML, both about 2 dB worse.

## 25G EPON PR30 downstream: EML

#### PR30 25G: EML


#### PR30 10G (EML)



## 25G EPON PR30 downstream: cooled DML

#### PR30 25G: cooled DML

#### PR30 10G (EML)



### Conclusions

- Based on vendor input, preliminary unamplified launch power and extinction ratio values are proposed for EML and cooled DML transmitters in the OLT.
- Next step: the 25G downstream wavelength needs to be selected before the downstream TDP can be quantified.
- The value of the TDP will then drive the amount of FEC coding gain improvement required.
- Or conversely, the realizable FEC improvement can quantified, and then a downstream wavelength selected with a supportable TDP.
- The relationships between required FEC improvement and TDP are:

Required FEC improvement (dB) =  $TDP_{EML}$  - 0.21 Required FEC improvement (dB) =  $TDP_{cooled\ DML}$  - 2.37 Might need to be adjust ~2 dB less, t.b.c.

 The same process needs to be replicated for upstream, with the possible inclusion of an uncooled DML ONU transmitter.



7 Public