Draft Material for RS

www.huawei.com

Author: Duane Remein Version: V1.0(20160414)

HUAWEI TECHNOLOGIES CO., LTD.

Global changes

(1 of 2)

- Start with text from Clause 76.2
- Globally make the following replacements (in order)
 - □ 10G-EPON -> 25G-EPON
 - □ 10/10G -> 25/25G
 - □ 10 Gb/s -> 25 Gb/s
 - □ XGMII -> 25GMII
 - □ 1G-EPON -> 10G-EPON
 - □ 10/1G -> 25G/10G
 - □ 1 Gb/s -> 10 Gb/s

Global changes

• Change references:

- □ From Clause 46 (XGMII) to Clause 106 (25GMII)
 - Note there are a few ref to figures in Cl 46 which do not have complementary figures in 106 and the Cl 46 ref should remain as is.
- From CI 35 (GMII) to Clause 46 (XGMII)
- From CI 77 to 202
- Update clause numbering

Figure changes

- Figure 76-1 (10G layering) see global changes
 - Expand to show multi-lane PHY (example given)
 - □ Change title from 10/10G to 25/25G
 - Add note: NOTE There may be 1, 2 or 4 instances of the PHY (PCS, FEC, PMA & PMD) at either the OLT or the ONU.
- Figure 76-2 (10/1G layering) see global changes
 - Expand to show multi-lane
 - □ Change title 10/1G to 25/10G
- Figure 76-3 (operation of OLT and ONU) see global changes
- Figure 76-4 (PCS & RS for dual rate mode at OLT)— see global changes
 - Strike @ xxxx nm
- Recommendation for Fig 76-1 & 2
 - We should probably consider modifying the figures to show multiple instances of the MAC/RS/PHY interfacing to a single fiber.
 - Additional text describing this should be added to 201.2.1

Table updates

• Table 76-1 (PLS_DATA.request mapping) – see global changes

- Replace TXD<7:0>, TX_EN, TX_ER, GTX_CLK with TXD<31:0>, TXC<3:0>, TX_CLK
- Table 76-2 (PLS_DATA.indication mapping) see global changes
 - 2) Replace RXD<7:0>, RX_ER, RX_DV, RX_CLK with RXD<31:0>, RXC<3:0>, RX_CLK

Specific changes

• 76.2 (RS) – add phrases regarding 50G-EPON and 100G-EPON

- with a single or multiple Physical Layers,
- 25G-EPON OLTs and ONUs would only need to support a single lane Physical Layer while 50G-EPON and 100G-EPON OLTs and ONUs would need to support two and four lane Physical Layers, respectively.
- 76.2.2.3 (Dual-rate mode) phrase regarding 1G-EPON ONUs should be removed.
- 76.2.3 (major concepts) reword 2nd & 3rd paras to consolidate signal names.
 - GMII used TXD<7:0>, ...
- 76.2.3.1 (Application) strike the 2nd sentence in 1st para as 25GMII is not physically defined. Slight rewording of 3rd sentence to accommodate change.

Specific changes

- 76.2.5 (XGMII structure) reword as follows:
 - The 25GMII structure is identical to the XGMII structure specified in 46.1.6. and Figure 46–2 depicts a schematic view of the RS inputs and outputs.
- 76.2.6.1 (Functional specifications for multiple MACs) strike
 - 76.2.6.1.1 (Variables) to 76.2.6.1.3 (RS Receive function) and add the following
 - The functional specification for multiple MACs is as described in 76.2.6.1except the logical_link_id variable shall be set to the broadcast value of 0x7FFD for the unregistered ONU MAC. See table 76.2.6.1.1 and Table 76-4 for additional information on permissible values for this variable. Enabled OLT.

General scrubbing

 Check for instances of "an 25GMII" and change to "a 25GMII" and change "a XGMII" to "an XGMII". Also there may be a few (

Updates to Clause 76

- Change Table 76-4 (Reserved LLID values) to add reserved value 0x7FFD
 - for 25/10GBASE-PRX and 25GBASE-PR as shown below

LLID value	Used in RS	Purpose
0x7FFF		Downstream: 1 Gb/s SCB
	1000BASE-PX	Upstream: ONU registration at 1 Gb/
0x7FFE		Downstream: 10 Gb/s SCB
	10/1GBASE-PRX	Upstream: ONU registration at 1 Gb/
		Downstream: 10 Gb/s SCB
	10GBASE-PR	Upstream: ONU registration at 10 Gb/
<u>0x7FFD</u>		Downstream: 25 Gb/s SCB
	<u>25/10GBASE-PRX</u>	Upstream: ONU registration at 10 Gb/
		Downstream: 25 Gb/s SCB
	<u>10GBASE-PR</u>	Upstream: ONU registration at 25 Gb/
0x7FF <mark>C</mark> Ж0x7F00	_	Reserved for future use

• In 76.2.6.1.3.2 (LLID)

Change "0x7FFF or 0x7FFE" to "0x7FFF, 0x7FFE, or 0x7FFD" in b) and c)

Observations from Clause 106

• Clause 106 does not define a physical implementation of 25GMII

- Clock rate is 390.625 MHz ±100 ppm (106.3)
- We could avoid having to do Idle insertion & deletion (something which is never implemented and only complicates the standard) by:
 - Taking exception to the Cl 106 clock rate <OR>
 - Adjusting the PMD rate to allow the 390.625 cock to fit well without doing Idle manipulation.
- Cl 106.1.7.3 Mapping of PLS_CARRIER.indication includes the following statement:
 - The RS never generates the PLS_CARRIER.indication primitive for PHYs that do not support EEE or Link Interruption.
 - PON supports "Link Interruption". Perhaps we can use this for ONU laser control instead of the Data Detector (another "standard only" feature).

Thank you www.huawei.com

Change to 76.2.6.1.3.2

If the device is an OLT, then the following comparison is made:

- a) The received mode bit is ignored.
- b) If the received logical_link_id value matches 0x7FFF, 0x7FFE, or 0x7FFD and an enabled MAC exists with a logical_link_id variable with the same value, then the comparison is considered a match to that MAC.
- c) If the received logical_link_id has a value other than 0x7FFF, 0x7FFE, or 0x7FFD and an enabled MAC exists with a mode variable with a value of 0 and a logical_link_id variable matching the received logical_link_id value, then the comparison is considered a match to that MAC. If the device is an ONU then the following comparison is made:
- d) If the received mode bit is equal to 0 and the received logical_link_id value matches the logical_link_id variable, then the comparison is considered a match.
- e) If the received mode bit is equal to 1 and the received logical_link_id value does not match the logical_link_id variable, or the received logical_link_id matches 0x7FFE, then the comparison is considered a match.
- f) If the received logical_link_id value matches one of the assigned multicast LLIDs, then the comparison is considered a match.

If no match is found,

HUAWEI TECHNOLOGIES CO., LTD.

Page 11

