
November 2016 1

Glen Kramer, Broadcom
Jean-Christophe Marion, Broadcom

Duane Remein, Huawei

Updates to ONU MPRS
state diagrams

NGEPON Introduction
 The ONU MPRS state diagrams were accepted as a baseline

at the September meeting in Fort Worth:

 Good news: The MPRS behavior is stable and no major
issues were found.

 A few optimizations and minor bug fixes are suggested
below.

November 2016 2

November 2016 3

ONU MPRS Input Process

NGEPON Old and New State Diagrams
BEGIN

IN_CLK

CHECK_PARITY

CHECK_ENV_SIZE

CwdLeft[wCol] ≤ FEC_PARITY_SIZE

EnvLeft[wCol] > 0

EnvLeft[wCol] ≤ 0 *
MPRS_CTRL[wCol].Request(lnk_index, env_length)

else

UCT

UCT

UCT

INSERT_FEC_PARITY_PLACEHOLDERS
TX_FIFO[wCol][wRow] ⇐ PARITY_PLACEHLDR

UCT

TX_ENVELOPE_DATA
TX_FIFO[wCol][wRow] ⇐ GetMacBlock(LnkIndex[wCol])

NO_ACTIVE_ENVELOPES
TX_FIFO[wCol][wRow] ⇐ NO_ENV_CODE
GapCount[wCol]++

TX_ENVELOPE_HEADER
GapCount[wCol] ⇐ 0
LnkIndex[wCol] ⇐ lnk_index
EnvLeft[wCol] ⇐ env_length
TX_FIFO[wCol][wRow] ⇐ EnvHeader(wCol, wRow)

UPDATE_CODEWORD_REMAINDER
CwdLeft[wCol]--

UTC

else

RESET_CODEWORD
CwdLeft[wCol] ⇐ FEC_CODEWORD_SIZE

EnvLeft[wCol] > 0

REQEST_NEXT_ENVELOPE
MPRS_CTRL[wCol].indication(CwdLeft[wCol])

UPDATE_ENVELOPE_SIZE
EnvLeft[wCol]--

else

UTC

GapCount[wCol] < GRANT_MARGIN *
CwdLeft[wCol] > 0

INIT
EnvLeft[wCol] ⇐ 0
CwdLeft[wCol] ⇐ FEC_CODEWORD_SIZE
GapCount[wCol] ⇐ GRANT_MARGIN

NEXT_ROW_ON_CLOCK
wRow ++
wCol ⇐ 0

UCT

wCol ≥ NUMBER_OF_CHANNELS

else

CHECK_ROW_COMPLETE
wCol++

else

November 2016 4

BEGIN

IN_CLK

CwdLeft[wCol] ≤ FEC_PARITY_SIZE

EnvLeft[wCol] > 0

UCT

UCT

UCT else

EnvLeft[wCol] > 0

else

UCT

CwdLeft[wCol] > 0 * EnvLeft[wCol] > GRANT_MARGIN

UCT

wCol ≠ 0

else

else

UPDATE_CODEWORD_REMAINDER
CwdLeft[wCol]--

RESET_CODEWORD
CwdLeft[wCol] ⇐ FEC_CODEWORD_SIZE

REQUEST_NEXT_ENVELOPE
MPRS_CTRL[wCol].indication(CwdLeft[wCol])

UPDATE_ENV_SIZE
EnvLeft[wCol]--

TX_ENVELOPE_DATA
TX_FIFO[wCol][wRow] ⇐ GetMacBlock(LinkId[wCol])

CHECK_ENV_SIZE

INSERT_FEC_PARITY_PLACEHOLDERS
TX_FIFO[wCol][wRow] ⇐ PARITY_PLACEHLDR

CHECK_PARITY

NEXT_COLUMN
wCol++

CHECK_HEADER

MPRS_CTRL[wCol].request(link_id,epam,env_length)
else

NO_ACTIVE_ENVELOPES
TX_FIFO[wCol][wRow] ⇐ NO_ENV_CODE

else

EnvLeft[wCol] ≤ GRANT_MARGIN else

UCT

INIT
EnvLeft[] ⇐ {GRANT_MARGIN}
CwdLeft[] ⇐ {FEC_CODEWORD_SIZE}
wRow ⇐ 0
wCol ⇐ 0

NEXT_ROW
wRow++
EnvPam++

TX_ENVELOPE_HEADER
LinkId[wCol] ⇐ link_id
EnvLeft[wCol] ⇐ env_length
TX_FIFO[wCol][wRow] ⇐ EnvHeader(wCol,epam)

NGEPON #1: Initialization
 The INIT state should initialize variables for all channels,

not just a single channel.

Changes:

1. Changed initializations for EnvLeft[] and CwdLeft[] to
initialize entire arrays

2. Added initialization for wRow and wCol

November 2016 5

NGEPON #2: Channel increment
 wCol variable represents a column in TX_FIFO. It also

maps directly to a channel.

 wCol is a 2-bit integer, which wraps around after value 3.

 Check wCol ≥ NUMBER_OF_CHANNELS is invalid.
Instead, the SD should simply move to the next row when
wCol = 0

November 2016 6

NGEPON #3: New Header Detection
 Old behavior:

– A new envelope header is detected only when a given
channel is free, i.e., if EnvLeft[ch] = 0.

 New behavior:

– A new envelope header is detected even if previous
envelope is still being transmitted.

– When a new header is detected, current envelope (if any)
is terminated.

 Changes:

– Check for new header is moved ahead of the check for
remaining envelope size (see transitions CHECK_PARITY 
CHECK_HEADER  TX_ENVELOPE_HEADER)

November 2016 7

NGEPON #4: GapCount variable
 GapCount variable is redundant. It

is incremented only when EnvLeft
is zero. Similarly, EnvLeft is
incremented only when GapCount
is zero.

 Changes:

1. GapCount variable is
eliminated

2. EnvLeft variable is defined as
signed integer. Positive values
represent the remaining
envelope length (in EQ).
Negative values represent the
number of EQs since the end of
the last envelope on a given
channel.

3. Added check for EnvLeft
overflow (see transition
NO_ACTIVE_ENVELOPES 
UPDATE_ENV_SIZE)

New Behavior

Old Behavior

EnvLeft
MRPS_CTRL.request
(EnvLength = X)

MRPS_CTRL.request
(EnvLength = Y)

GapCount

GRANT_MARGIN

EnvLeft
MRPS_CTRL.request
(EnvLength = X)

MRPS_CTRL.request
(EnvLength = Y)

GRANT_MARGIN

MRPS_CTRL.request
(EnvLength = Z)

MRPS_CTRL.request
(EnvLength = Z)

November 2016 8

NGEPON #5: EPAM Insertion
 To facilitate alignment of received envelopes at the OLT, the envelope

header carries Envelope Position Alignment Marker (EPAM).
 The alignment mechanism is explained in kramer_3ca_3a_1116.pdf.

 Changes:

1. EPAM is passed to MPRS Input Process from the MPCP

2. EnvHeader function uses the received EPAM value for the first
envelope in a burst.

November 2016

EQ EnvHeader(int2 col, int5 epam) //col – 2 bits; epam – 5 bits
{
 EQ hdr;

 if(EnvLeft[col+1] == GRANT_MARGIN &&
 EnvLeft[col+2] == GRANT_MARGIN &&
 EnvLeft[col+3] == GRANT_MARGIN) EnvPam = epam;

 hdr<23:8> = LinkId[col]; //LLID
 hdr<59:36> = EnvLeft[col]; //EnvLength
 hdr<4:0> = EnvPam; //EPAM

 return hdr;
 }

9

NGEPON #6: TX_FIFO Buffer Size
 It was previously mentioned (see kramer_3ca_2c_0916.pdf)

that it would suffice for the TX_FIFO buffer at the ONU to have
only two rows

– Total TX_FIFO size = 2 rows x 4 column x 72-bits = 576 bits

Changes:

1.wRow variable is separated from the EnvPam variable.

2.wRow is a 1-bit integer that represents row index in the
TX_FIFO in the ONU.

3.EnvPam is 5-bit integer that represents row index in the
RX_FIFO at the OLT.

November 2016 10

NGEPON #7: Link Index

1.Rather than operating with link indices, the state
diagram is changed to operate with link IDs (i.e.,
LLIDs).
– This reduces the number of look-ups.
– The LinkId value is converted into link index only once, inside

the function GetMacBlock(…)

November 2016 11

November 2016 12

ONU MPRS Transmit
Process

NGEPON Old and New State Diagrams
BEGIN

WAIT_FOR_EVEN_TX_CLOCK
rCol ⇐ 0

TX_CLK

UPDATE_INPUT_CLOCK
IN_CLK ⇐ TX_CLK

UCT

TRANSMIT_EVEN_WORD
TXD[rCol]<31:0> ⇐ TX_FIFO[rCol][rRow]<31:0>
TXC[rCol]<3:0> ⇐ TX_FIFO[rCol][rRow]<35:32>
rCol++

rCol ≥ NUMBER_OF_CHANNELS

WAIT_FOR_ODD_TX_CLOCK
rCol = 0

TX_CLK

TRANSMIT_ODD_WORD
TXD[rCol]<31:0> ⇐ TX_FIFO[rCol][rRow]<67:36>
TXC[rCol]<3:0> ⇐ TX_FIFO[rCol][rRow]<71:68>
rCol++

else

else

rCol ≥ NUMBER_OF_CHANNELS

BEGIN

INIT
rRow ⇐ 0

TX_CLK[ch]

TX_CLK[ch]

TRANSMIT_LOW_WORD
TXC[ch]<3:0> ⇐ TX_FIFO[ch][rRow]<3:0>
TXD[ch]<31:0> ⇐ TX_FIFO[ch][rRow]<35:4>

TRANSMIT_HIGH_WORD
TXC[ch]<3:0> ⇐ TX_FIFO[ch][rRow]<39:36>
TXD[ch]<31:0> ⇐ TX_FIFO[ch][rRow]<71:40>

UCT

NEXT_ROW
rRow++

TX_CLK[ch]

November 2016 13

NGEPON #1: Separate SD Instance per Channel

 Old Behavior:

– One instance of state diagram handled all four channels.

 New Behavior:

– The SD is changed to operate as a single instance per channel,
to make it symmetric with the OLT Receive Process.
(The OLT must have separate instances of the Receive Process
because the RX_CLK on every channel has a different phase.)

ONUOLT

OLT
Output
Process

RX_FIFO

OLT Receive
Process

OLT Receive
Process

OLT Receive
Process

OLT Receive
Process

ONU
Input

Process
TX_FIFO

ONU Transmit
Process

ONU Transmit
Process

ONU Transmit
Process

ONU Transmit
Process

November 2016 14

NGEPON #2: TX_FIFO Buffer Size
 rRow should be defined similarly to wRow (1-bit integer)

Changes:

1.Added initialization for rRow

2.Added state NEXT_ROW to increment rRow after every
other 25GMII transfer.

 Note that while the wRow is initialized to 1, the rRow is
initialized to 0. Both variables are incremented synchronously.
Thus, while the Input Process writes into row 1, the Transmit
Process reads row 0. Then, when the Input Process writes into
row 0, the Transmit Process reads from row 1.

November 2016 15

NGEPON #3: TX_FIFO Buffer Size

 Bit positions in states TRANSMIT_EVEN_WORD and
TRANSMIT_ODD_WORD are corrected to match the
EQ format (see the next slide)

November 2016 16

NGEPON

SH
10

Block Type Code
0x55 LLID (16 bits) EPAM

(5 bits)
O-code
(TBD)

O-code
(TBD) Env Length (24 bits)

TXD-Lane 0 TXD-Lane 1 TXD-Lane 2 TXD-Lane 3

66-bit encoding of Envelope Header

25GMII transfer of Envelope Header

/EHO1/ LLID (16 bits)

/EHO2/

TXC (4 bits)

0x8

0x8

EPAM
(5 bits)

Env Length (24 bits)

Envelope Header EQ

/EHO1/ LLID (16 bits) /EHO2/Ctrl
0x8

Ctrl
0x8

EPAM
(5 bits) Env Length (24 bits)

1st transfer

2nd transfer

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0 1 2 3 4 5 6 7 8 9

6
0 1 2 3 4 5 6 7 8 9

7
0 1

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0 1 2 3 4 5 6 7 8 9

6
0 1 2 3 4 5

Envelope Header Format

November 2016 17

Fields:

LLID – ULID or PLID value –
 determines destination
 vMAC instance

EPAM – Envelope Position
 Alignment Marker

EnvLength – Envelope length
 in EQs

November 2016 18

Thank You

