Updates to ONU MPRS
state diagrams

Glen Kramer, Broadcom

INntroduction

 The ONU MPRS state diagrams were accepted as a baseline
at the September meeting in Fort Worth:

Motion #5
Adopt the ONU upstream channel bonding proposal as presented in kramer_3ca_2b_0916.pdf and
develop a similar mechanism for the downstream. This motion supersedes Motion #4 from July 2016

meeting.

Moved: Glen Kramer Seconded: Duane Remein
For: 20 Against: O Abstain: 4
Technical 2 75% Passed

RECORDER’S NOTE: after the close of the meeting it was noticed that motion #5 refers to a non-
existent file kramer_3ca_2b_0916.pdf. The correct file name should have been
kramer_3ca_2c_0916.pdf.

O Good news: The MPRS behavior is stable and no major
Issues were found.

A few optimizations and minor bug fixes are suggested
below.

November 2016 2

ONU MPRS Input Process

Old and New State Diagrams

BEGIN
) — i }
INIT NEXT_COLUMN NEXT_ROW INIT
Envieft[wCol] <« 0
CK_ROW_COMPLETE CwdLeft[wCol] < FEC_CODEWORD_SIZE wCol++ WRow++ EnvLeft[] « {GRANT_MARGIN}
GapCount [wCo1] < GRANT_MARGIN alen o EnvPam++ Cvl;dLeft [0] < {FEC_CODEWORD_SIZE}
WROW <
| uct I (El= wCol « 0
wCol > NUMBER_OF_CHANNELS vy ¥ y v
NEXT_ROW_ON_CLOCK CHECK_PARITY uer

; wRow ++

wCol «<= 0

CHECK_PRRITY
IN_CLK else CwdLeft[wCol] < FEC_PARITY_SIZE
else |c dLeft[wCol] < FEC_PARITY_SIZE v A 4
wdbertiweol] = - CHECK_HEADER INSERT_FEC_PARITY_PLACEHOLDERS
CHECK_ENV_SIZ INSERT_FEC_PARITY_PLACEHOLDERS TX_FIFO[wCoT] [wRow] < PARITY_PLACEHLDR
TX_FIFO[wCol][wRow] < PARITY_PLACEHLDR s ucTt
ucT MPRS_CTRL[wCo1].request(1ink_id,epam,env_length)

else

Y v
NO_ACTIVE_ENVELOPES TX_ENVELOPE_HEADER

FIFO[wCo1] [wRow] <= NO_ENV_CODE
GayCount [wCo1]++ LinkId[wCol] <« link_id
EnvLeft[wCol] < env_length

EnviLeft[wCo1] > O

y
HECK_ENV_SIZE

Ola

‘ Uy olse TX_FIFO[wCo1] [wRow] < EnvHeader (wCol,epam)
TX_ENVELOP ATA
TX_FIFO[wCo1] [wRow] < GetMacBMyck (LnkIndex[wCol]) EnviLeft[wCol] > 0 ucT
y
ucT
EnvLeft[wCo1] < 0 *
MPRS_CTRL[wCo1] .Request (1nk_index, TX—ENVELOPE—DATA
TX_FIFO[wCo1] [wRow] < GetMacBlock(LinkId[wCo1])
TX_ENVELOPE_HEADER
GapCount[wCol] «< 0O uct
LnkIndex[wCo1] <« T1nk_index
EnvLeft[wCo1l] <« env_length h 4 A 4 A 4
TX_FIFO[wCol][wRow] < EnvHeader (wCol, wRow) NO_ACTIVE_ENVELOPES UPDATE_ENV_SIZE
ucT TX_FIFO[wCol1] [wRow] < NO_ENV_CODE EnvLeft[wCo1]--
UPDATE_ENVELOPE_SIZE EnvLeft[wCol] < GRANT_MARGIN else else
EnvLeft[wCol1]-- »
EnvLeft[wCol] > 0O els y A EnviLeft[wCol] > 0
REQUEST_NEXT_ENVELOPE

REQEST_NEXT_ENVELOPE

MPRS_CTRL[WCo1].indication(CwdLeft [wCo MPRS_CTRL[wCo1].indication(CwdLeft[wCo1])

uTc ucT
UPDATE_CODEWORD_REMAINDER ! ¥ ¥
CwdLeft [wCol] - - RESET_CODEWORD UPDATE_CODEWORD_REMAINDER
S e b o B CwdLeft[wCol] « FEC_CODEWORD_SIZE CwdLeft [wCol]--
B SEEIAIEIN = © RESET_CODEWORD uct else
CwdLef Col FEC_CODEWORD_SIZE >
wdbereiweol]l = FEC = ~ CwdLeft[wCol] > @ * EnvLeft[wCol] > GRANT_WARGIN

November 2016 Tore

#1: Initialization

J The INIT state should initialize variables for all channels,
not just a single channel.

Changes:

1. Changed initializations for EnvLeft[] and CwdLeft[] to
initialize entire arrays

2. Added initialization for wRow and wCol

November 2016 5

#2: Channel increment

O wcCol variable represents a column in TX_FIFO. It also
maps directly to a channel.

O wcCol is a 2-bit integer, which wraps around after value 3.

[Check wCol 2 NUMBER_OF CHANNELS is invalid.
Instead, the SD should simply move to the next row when

wCol =0

November 2016 6

#3: New Header Detection

J Old behavior:

— A new envelope header is detected only when a given
channel is free, i.e., If EnvLeft[ch] = O.

J New behavior:

— A new envelope header is detected even if previous
envelope is still being transmitted.

— When a new header is detected, current envelope (if any)
IS terminated.

O Changes:

— Check for new header is moved ahead of the check for
remaining envelope size (see transitions CHECK_ PARITY -
CHECK_ HEADER - TX ENVELOPE_HEADER)

November 2016 7

#4: GapCount variable

O GapCount variable is redundant. It
Is incremented only when EnvLeft
iIs zero. Similarly, EnvLeft is
incremented only when GapCount
IS zero.

 Changes:

1. GapCount variable is
eliminated

2. EnvLeft variable is defined as
signed integer. Positive values
represent the remaining
envelope length (in EQ).
Negative values represent the
number of EQs since the end of
the last envelope on a given
channel.

3. Added check for EnvLeft
overflow (see transition
NO_ACTIVE_ENVELOPES -

JRATE_ENV_SIZE)

Novembep

MRPS_CTRL.request
(EnvLength = Y)

MRPS_CTRL.request
(EnvLength = Z)

Old Behavior

™

MRPS_CTRL.request
(EnvLength = X)

GRANT_MARGIN

EnvLeft

GapCounE

MRPS_CTRL.request
(EnvLength = Y)

MRPS_CTRL.request
(EnvLength = Z)

New Behavior

™,

MRPS_CTRL.request
(EnvLength = X)

GRANT_MARGIN

EnvLeft

#5: EPAM Insertion

[To facilitate alignment of received envelopes at the OLT, the envelope
header carries Envelope Position Alignment Marker (EPAM).

O The alignment mechanism is explained in kramer_3ca_3a 1116.pdf.

 Changes:
1. EPAM is passed to MPRS Input Process from the MPCP

2. EnvHeader function uses the received EPAM value for the first
envelope in a burst.
EQ EnvHeader(int2 col, int5 epam) //col — 2 bits; epam — 5 bits

EQ hdr;

1T(EnvLeft[col+1] == GRANT_MARGIN &&
EnvLeft[col+2] == GRANT_MARGIN &&
EnvLeft[col+3] == GRANT_MARGIN) EnvPam = epam;

hdr<23:8> = Linkld[col]; //LL1D
hdr<59:36> = EnvLeft[col]; //EnvLength
hdr<4:0> = EnvPam; //EPAM

return hdr;

}

November 2016 9

#6: TX FIFO Buffer Size

O It was previously mentioned (see kramer_3ca_2c _0916.pdf)
that it would suffice for the TX_ FIFO buffer at the ONU to have
only two rows

— Total TX _FIFO size = 2 rows X 4 column x 72-bits = 576 bits
Changes:
1.wRow variable is separated from the EnvPam variable.

2.WRow Is a 1-bit integer that represents row index in the
TX_FIFO in the ONU.

3.EnvPam is 5-bit integer that represents row index in the
RX_FIFO at the OLT.

November 2016 10

#7: Link Index

1.Rather than operating with link indices, the state
diagram is changed to operate with link IDs (i.e.,
LLIDS).

— This reduces the number of look-ups.

— The Linkld value is converted into link index only once, inside
the function GetMacBlock(...)

November 2016 11

ONU MPRS Transmit
Process

Old and New State Diagrams

1 lBEGIN

WAIT_FOR_EVEN_TX_CLOCK

LTX_C LK

iBEGIN
TE_INPUT_CLOCK v
NEXT_ROW INIT

l— rRow++ rRow < 0
lTX_CLK[ch] lTX_CLK[ch]

TXD[rCo1]<31:0> < MFIFO[rCol1][rRow]<31:0>
TXC[rCo1]<3:0> FO[rCo1] [rRow]<35:32> TRANSMIT_LOW_WORD

rCol++ TXC[ch]<3:0> <« TX_FIFO[ch][rRow]<3:0>
TXD[ch]<31:0> < TX_FIFO[ch][rRow]<35:4>

lrcm > | ANNELS else

WAIT_FOR_ODD_TX_CLOCK
rCol =0

LTX_C LK

TRANSMIT_ODD_WORD

TXD[rCo1]<31:0> < TX_FIFO[rCol][rRow]<67:36
TXC[rCo1]<3:0> « TX_FIFO[rCol][rRow]<71:68>
rCol++

lTX_CLK[ch]

TRANSMIT_HIGH_WORD

TXC[ch]<3:0> <« TX_FIFO[ch][rRow]<39:36>
TXD[ch]<31:0> « TX_FIFO[ch][rRow]<71:40>

uct

rCol = NUMBER_OF_CHANNELS else

November 2016 13

#1: Separate SD Instance per Channel

 Old Behavior:
— One instance of state diagram handled all four channels.
 New Behavior:

— The SD is changed to operate as a single instance per channel,
to make it symmetric with the OLT Receive Process.
(The OLT must have separate instances of the Receive Process
because the RX _CLK on every channel has a different phase.)

OLT ONU
OLT Receive ONU Transmit
Process Process
OLT Receive ONU Transmit
OLT Process Process ONU
Output RX_FIFO TX_FIFO Input

Process OLT Receive ONU Transmit Process
Process Process
OLT Receive ONU Transmit
Process Process

November 2016 14

#2: TX_ FIFO Buffer Size

 rRow should be defined similarly to wRow (1-bit integer)
Changes:
1. Added initialization for rRow

2.Added state NEXT_ROW to increment rRow after every
other 25GMII transfer.

 Note that while the wRow is initialized to 1, the rRow is
initialized to 0. Both variables are incremented synchronously.
Thus, while the Input Process writes into row 1, the Transmit
Process reads row 0. Then, when the Input Process writes into
row O, the Transmit Process reads from row 1.

November 2016 15

#3: TX FIFO Buffer Size

] Bit positions in states TRANSMIT EVEN_ WORD and
TRANSMIT_ODD_ WORD are corrected to match the
EQ format (see the next slide)

November 2016 16

Envelope Header Format

66-bit encoding of Envelope Header

0 1 2 3 4 5 6
0(1(2|3|4|5|6|7|8|9|0]1]2(3|4|5/6|7|8|9]|0{1|2|3|4|5 0]1]|2|3|4(5/6|7(8|9|0/1]|2|3|4|5|6|7|8(9|0/1|2|3]|4|5|6|7|8]|9|0{1|2|3|4|5

[e2]
\‘
[ee]
[{e]

Z
SH | Block Type Code . / EPAM | O-code | O-code .
LLID (16 bits) . Env Length (24 bits)
10 0X55 5 bit TBD) | (TBD
X 7/ Ghis) | (D) | (18D)
Fields:
25GMI I transfer of Envelope Header LLID— ULID or PLID value —
TXC (4 bits) ~ TXD-Lane 0 TXD-Lane 1 TXD-Lane 2 TXD-Lane 3 determines destination
’ VMAC instance
15t transfer | 0x8 JEHOL/ LLID (46 bits) % éptf\it';")
3 , EPAM — Envelope Position
2nd transfer | 0x8 [EHO2/ Env Length (24 bits Alignment Marker
EnvLength — Envelope length
in EQs
Envelope Header EQ
0 1 2 3 4 5 6 7
0[1/2/3]4|5/6/7/8]9]0[1|2|3|4|5|6/7|8]9|0|1|2|3|4|5|6|7|8/9[0|1]2|3]4|5/6|7|8]9|0|1]2|3]|4|5|6|7|8|9|0|1|2|3]4|5|6|7|8]|9|0|1]2|3|4|5|6/7|8]9|0|1
ctrl . 7 EPAM [ctrl .
0x8 [EHOL/ LLID (16 hits) /% (5 bits) 0x8 [EHO2/ Env Length (24 bits)

November 2016 17

Thank You

