FEC Proposal for NGEPON - update (rev 1a)

 a BROADCOMMark Laubach, Shaohua Yang, Yang Han, Ryan Hirth, Glen Kramer 6 November 2017 IEEE 802/802.3 Plenary, Orlando Florida

Introduction

- An LDPC $(18493,15677)[11 \times 74 \times 256] 0.848$ rate FEC code, code matrix, and interleaver was proposed at the May 2017 meeting
- laubach 3ca 10517 with update laubach 3ca 40517
- This presentation introduces an updated "New" LDPC $(18493,15677)$ [13x75x256] 0.848
- Increased use of parity word puncturing for improved correction performance
- Motivation from jinyinrong_3ca_2b_0717
- Error floor below BER 1×10^{-12} (meets TF Objective)
- Iterations capped at 15
- Author's LDPC proposal is updated
- Recommend code matrix and puncturing from this presentation
- AWGN and Gilbert burst error models are studied
- Pre-coding and Gilbert burst study is still in progress as of 10/27/17.
- Impact of Omega256 structured and random interleaving is reviewed.

Proposed New Parity Check Matrix

0 -1 - $1-1-10-1-1-10-1-1-1-10-1-10-1-1-1-1-10-1-10-1-1-10-1-1-1-1-1-10-1-1-1-10-1-1-10-1-1-10-1-1-1-10-1-1-10-1-10-10-1-100-10-10$

1-1 $22-1-1-1-1-10-1107-1-100-1-1-1-1-1-1-1-1-1-10-1113-1-1-1-10-1-1139-1-1-1-10-1-1-1229-10-1-1-1-1-1-10-1-1-1-10-1-10-1248-1-11756330-1-10-1147159$ 1-1-1 0-1-1-1-1-1 0-1-1 0-1-1-1 125-1-1-1-1 0-1-1-1-1 $0242-1-1-1-1-10-169-1-1-160-1-1-1-1-10-1-1-10-1-1-1-10-1148-1-10-1-1-1-1-13949140-1115-1151715367$

Puncturing:

- 512 bits punctured
- Location from right side of the H matrix (two circulants with weight 12 and 13)

Parity Word Shortening:

- 195 bits shortened
- Location from the left side of the H matrix (the circulant with weight 3)

Use shortening to support handling of different burst lengths

- Upstream, set to zero for the bits corresponding to shortened locations during encoding. Encode normally for the full length of the code. Shortened bits are not transmitted.
- Downstream, set to maximum LLR at decoder input for shortening locations. Decode normally for the full length of the code.
- Decoding complexity/latency stays the same
- Shortening doesn't degrade error floor performance. If the shortening locations are carefully chosen, shortening will improve error floor performance

AWGN Performance

Gilbert burst error performance

Note 1: with "hardware friendly" local Omega256 interleaver presented in laubach_3ca_1_0517.

Note 2: original Omega256 interleaver was optimized for use with precoding. No precoding is used in this presentations studies.

Gilbert burst error performance "zoom in"

Comparison with \& without interleaver.
"Omega256" is a local interleaver sized for spanning a single circulant of 256 bits.
"Random" intereaver spans the entire codeword.

Observation: random interleaver provides better performance but at increased complexity.

FEC Code Gains, sizes, and latencies

	Length	Rate	$\begin{aligned} & \text { Non- } \\ & \text { Zero } \end{aligned}$Blocks	NECG ${ }^{1}$ (dB) (optical gain)		M Gates Encoder + Decoder (approximately)	```Latency 3 (\musec) (includessingle buffer)```	Reference
				AWGN	Gilbert Burst ${ }^{2}$			
LDPC	$\begin{gathered} (18493,15677) \\ {[11 \times 74 \times 256]^{7}} \end{gathered}$	0.848	382	$\begin{gathered} 2.46 \\ (1.7-2.2) \end{gathered}$	$\begin{gathered} 1.85 \\ (1.3-1.8) \end{gathered}$			laubach_3ca_1_0517
	$\begin{gathered} (18493,15677) \\ {[13 \times 75 \times 256]} \end{gathered}$		290	$\begin{gathered} 2.6 \\ (1.8-2.3) \end{gathered}$	$\begin{gathered} \hline 1.76^{5} \\ (1.2-1.6) \\ 1.87^{6} \\ (1.2-1.7) \end{gathered}$	1.65 to 1.8	E 2.77 + D $2.95=5.72{ }^{4}$	This presentation.
	$\begin{gathered} (18493,15677) \\ {[13 \times 76 \times 256]^{8}} \end{gathered}$		296	$\begin{gathered} 2.56 \\ (1.8-2.3) \end{gathered}$	$\begin{gathered} 1.75 \\ (1.2-1.8) \end{gathered}$	3.4	-na-	jinyinrong_3ca_2b_0717
RS	$(1023,847)$	0.828	-na-	$\begin{gathered} 1.34 \\ (0.94-1.2) \end{gathered}$	$\begin{gathered} 1.35 \\ (0.95-1.2) \end{gathered}$	1.06	E+D: 0.77	

${ }^{1}$ Electrical gain over $\mathrm{RS}(255,223)$ of 7.1 dB . Optical gain is 0.7 to 0.9 * NECG
${ }^{2}$ Gilbert Burst (with interleaver, no precoding)
${ }^{3}$ Capped at 15 iterations
${ }^{4}$ Implementation dependent: LDPC encoding and decoding latency can be reduced with more parallel operations, with the cost of additional area; e.g. encoder could be reduced from 2.0 to 0.94 by adding more complex multipliers. In decoder latency could be reduced by lowering the iteration cap, however this needs further study.
${ }^{5}$ Hardware friendly interleaver $\quad{ }^{7}$ [11x74ex256] code gain first presented is based on 50 max iteration
${ }^{6}$ Full random interleaver $\quad{ }^{8}$ From our own simulation Jinyinrong code gain is 2.56 dB on AWGN and 1.75 dB on Gilbert with max 15 local, hardware friendly interleaver

8 | P802.3ca November 2017 plenary meeting

On Shortening methodology

- Please refer to Glen Kramer’s analysis presented in laubach 3ca 10317
- Conclusion
- Only one code word size needed for upstream
- Shorten information word only, parity word stays the same size
- For this graph, minimum information word size is:
- 64 byte Ethernet frame + 8 byte EH in $3 * 257$ bits $=771$ bits (investigating line coding that has already be standardized in $25 \mathrm{~Gb} / \mathrm{s}$ Ethernet as a starting point)
- Observation
- Gain increases
- No error floor

BROADCOM

On processing latency

New Slide

- Several good awareness raising presentations on eCPRI and 3GPP
- Lowest one-way latency comes from eCPRI at 100 нsec (3GPP $250 \mu \mathrm{sec}$)
- Was hoping to see proposals on one-way latency budgets for P802.3ca
- Like optical power budget, need to understand what latency gets allocated between the test points for the measurement, separate for downstream and upstream e. m :
- Propagation delay (what is our maximum support distance?)
- OLT processing (includes FEC)
- ONU processing (includes FEC and any upstream scheduling latency considerations)
- Until then a total one-way FEC latency contribution < 10\% (10 $\mu \mathrm{sec}$) seems reasonable

Impact of using pre-coding "on the wire"

- We had a request to look at performance for Gilbert burst + precoding

Summary

- Updated "New" LDPC(18493,15677) [13x75x256] 0.848 rate, using puncturing and min-sum decoding sufficiently provides a NECG that meets error performance using 10^{-2} raw input, with an error floor below the Task Force BER objective of 1×10^{-12}.
- The authors continue to recommend selection of LDPC as the FEC method for P802.3ca
- Recommend code matrix and puncturing from this presentation
- Original Omega256 interleaving technique provides small gain with Gilbert burst error model for both the Jinyinrong and "New" LDPC codes studied.
- Was optimized for a noise environment that included pre-coding in original studies
- Other local interleaver optimizations for AWGN only and Gilbert burst only noise models may or may not provide advance beyond random interleaver.

Thank you

a BROADCOM connecting everything \odot

