802.3ca PHY Names Revisited

Glen Kramer, Broadcom

Accepted PHY naming

$\mathbf{2 5}$ or $\mathbf{5 0}$	Downstream MAC rate.
$[/ \mathbf{1 0}$ or $\mathbf{2 5}]$	Upstream MAC rate. Only shown for asymmetric channels
\mathbf{G}	Gigabit/s rate (in reference to the above numbers)
$\mathbf{B A S E}$	Baseband Signal

\mathbf{P}	PON medium
\mathbf{Q}	PCS type: \mathbf{Q} for $256 \mathrm{~b} / 257 \mathrm{~b}$
\mathbf{m}	Supported downstream wavelengths $=\{1,2\}$
\mathbf{n}	Supported upstream wavelengths $=\{1,2\}+\{\mathrm{G}, \mathrm{X}\}$
$\mathbf{-}$	D - Downstream-facing PMD (i.e., in the OLT) \mathbf{U} - Upstream-facing PMD (i.e., in the ONU)
\mathbf{D}	Power class $=\{2,3\}$
\mathbf{k}	

PX, PRX, PR, and PQ PHY Types

\square The letter(s) after "P" supposedly identify PCS line coding format

- X: 8b/10b
- R: 64b/66b
- Q: 256b/257b
- In Clause 60 and 75, we re-purposed these letters for PHY Link names because each unique line coding also used a unique line rate.
- PX: Symmetric 1Gb/s PON media
- PR: Symmetric 10Gb/s PON media
- PRX: Asymmetric 10Gb/s down + 1Gb/s up PON media

New Problem to Solve

\square We cannot continue the same trend, because with PQ, a unique line code does not mean a unique line rate.

- $10.3125 \mathrm{~Gb} /$ s rate can be used with both 64b/66b (in 802.3av) and 256b/257b (in 802.3ca)
\square We are now forced to make a decision: Should letters $\mathbf{X}, \mathbf{R}, \mathbf{Q}$ represent PON line coding or PON line rate?

Option \#1 (current)

\square Letters X, R, and Q designate line coding. But we never used PX, PR, and PRX in PCS clauses, where the line coding is defined. We always use these terms in PMD clauses to differentiate line rates.
\square Because line rate is not indicated in PMD name in any way, we had to resort to an explicit indication of the number of wavelengths to determine the line rates
\square 50G-EPON per .3ca:

- 50/10GBASE-PQ21-D3
- 50/25GBASE-PQ21-D3
- 50GBASE-PQ22-D3
- Potential future 50G single-wavelength solution
- 50/10GBASE-PQ11-D3
- 50/25GBASE-PQ11-D3

EPON PHY Link Type	Line Code	
	Downstream	Upstream
PX	$8 \mathrm{~b} / 10 \mathrm{~b}$	$8 \mathrm{~b} / 10 \mathrm{~b}$
PR	$64 \mathrm{~b} / 66 \mathrm{~b}$	$64 \mathrm{~b} / 66 \mathrm{~b}$
PRX	$64 \mathrm{~b} / 66 \mathrm{~b}$	$8 \mathrm{~b} / 10 \mathrm{~b}$
PQ	$256 \mathrm{~b} / 257 \mathrm{~b}$	$256 \mathrm{~b} / 257 \mathrm{~b}$

- 50GBASE-PQ11-D3

Option \#2

\square Define "Q" to mean "25.78125 Gb/ s line rate"
\square The number of wavelengths is implicit in the downstream/upstream data rates
\square 50G-EPON per .3ca:

- 50/10GBASE-PQR-D3
- 50/25GBASE-PQ-D3
- 50GBASE-PQ-D3
- Potential future 50G single-wavelength solution
- Use a new letter, say "S", to represent the new line rate or new modulation
- 50/10GBASE-PSR-D3

EPON PHY Link Type	Line Rate (Gb/s)	
	Downstream	Upstream
PX	1.25	1.25
PR	10.3125	10.3125
PRX	10.3125	1.25
PQ	25.78125	25.78125
PQR	25.78125	10.3125
PS	51.5625	51.5625
PSQ	51.5625	25.78125
PSR	51.5625	10.3125

- 50/25GBASE-PSQ-D3
- 50GBASE-PS-D3

Option \#2

\square Option 2 is better, but still carries redundant information

- 50/10GBASE-PQRD3
- 50125BASE-PQD3
- 50/50GBASE-PQ-D3
- 50 10GBASE-PSRD3
- $5 0 \longdiv { 2 5 G A S E - P S Q D 3 }$

Option \#3

\square PX, PR, PRX, PQ, .. identify any and all pertinent link parameters (line coding, line rate, modulation, etc.) In other words, the letters identify PMD as specified by a given project.

	Equivalent to	Specification Details
PX	as defined in .3ah	8b/10b, NRZ, 1.25GBd
PR	as defined in .3av	64b/66b, NRZ, 10.3125GBd
PRX	as defined in .3av	Downstream: 64b/66b, NRZ, 10.3125GBd Upstream: 8b/10b, NRZ, 1.25GBd
PQ	as defined in .3ca	256b/257b, NRZ, 25.78125GBd or 10.3125 GBd (upstream only)
PS (future)	as defined in .3??	256b/257b, NRZ/PAM4 (?), 25.78125GBd or $51.5625 ~ G B d ~(?) ~$

PMD names according to Option \#3

PX (.3ah)	PRX (.3av)	PR (.3av)	PQ (.3ca)	PS (.3??)
1000BASE-PX	10/1GBASE-PRX	10GBASE-PR	25/10GBASE-PQ	50/10GBASE-PS
			25GBASE-PQ	50/25GBASE-PS
			$50 / 10 \mathrm{GBASE-PQ}$	50GBASE-PS
			$50 / 25 \mathrm{GBASE-PQ}$	
			$50 \mathrm{GBASE-PQ}$	

(Designators for power class, location (OLT/ONU), and coexistence option are omitted)
\square Option \#3 does not carry redundant information in PMD names

Exhaustive list of PMDs

Upstream/ Downstream MAC data rate	Option \#1 (current)	Option \#2	Option \#3
25G/10G	25/10GBASE-PQ11G-Dn 25/10GBASE-PQ11G-Un 25/10GBASE-PQ11X-Dn 25/10GBASE-PQ11X-Un	25/10GBASE-PQRG-Dn 25/10GBASE-PQRG-Un 25/10GBASE-PQRX-Dn 25/10GBASE-PQRX-Un	25/10GBASE-PQG-Dn 25/10GBASE-PQG-Un 25110GBASE-PQX-Dn 25110GBASE-PQX-Un
25G/25G	25GBASE-PQ11G-Dn 25GBASE-PQ11G-Un 25GBASE-PQ11X-Dn 25GBASE-PQ11X-Un	25GBASE-PQG-Dn 25GBASE-PQG-Un 25GBASE-PQX-Dn 25GBASE-PQX-Un	25GBASE-PQG-Dn 25GBASE-PQG-Un 25GBASE-PQX-Dn 25GBASE-PQX-Un
50G/10G	50/10GBASE-PQ21G-Dn 50/10GBASE-PQ21G-Un 50/10GBASE-PQ21X-Dn 50/10GBASE-PQ21X-Un	50/10GBASE-PQRG-Dn 50/10GBASE-PQRG-Un 50/10GBASE-PQRX-Dn 50/10GBASE-PQRX-Un	50/10GBASE-PQG-Dn 50/10GBASE-PQG-Un 50/10GBASE-PQX-Dn 50/10GBASE-PQX-Un
50G/25G	50/25GBASE-PQ21G-Dn 50/25GBASE-PQ21G-Un 50/25GBASE-PQ21X-Dn 50/25GBASE-PQ21X-Un	50/25GBASE-PQG-Dn 50/25GBASE-PQG-Un 50/25GBASE-PQX-Dn 50/25GBASE-PQX-Un	50/25GBASE-PQG-Dn 50/25GBASE-PQG-Un 50/25GBASE-PQX-Dn 50/25GBASE-PQX-Un
50G/50G	50GBASE-PQ22G-Dn 50GBASE-PQ22G-Un 50GBASE-PQ22X-Dn 50GBASE-PQ22X-Un	50GBASE-PQG-Dn 50GBASE-PQG-Un 50GBASE-PQX-Dn 50GBASE-PQX-Un	50GBASE-PQG-Dn 50GBASE-PQG-Un 50GBASE-PQX-Dn 50GBASE-PQX-Un

PHY Naming Proposal

$\mathbf{2 5}$ or $\mathbf{5 0}$	Downstream MAC rate.
$[/ \mathbf{1 0}$ or $\mathbf{2 5}]$	Upstream MAC rate. Only shown for asymmetric channels
\mathbf{G}	Gigabit/s rate (in reference to the above numbers)
BASE	Baseband Signal

\mathbf{P}	PON medium
\mathbf{Q}	PCS type: 256b/257b PMD for Nx25G-EPON as defined in 802.3ca, clause 141
\boldsymbol{m}	Supported downstream wavelengths $=\{1,2\}$
\mathbf{c}	Supported upstream wavelengths $=\{1,2\}+\{G, X\}$ Coexistence option $=\{G, X\}$

\mathbf{D}	\mathbf{D} - Downstream-facing PMD (i.e., in the OLT) \mathbf{U} - Upstream-facing PMD (i.e., in the ONU)
\mathbf{n}	Power class $=\{2,3\}$

Thank You

