143.3.3.1-Conventions

143.3.3.2 State diagram conventions

The body of this standard comprises state diagrams, including the associated definitions of variables, constants, and functions. In case of any discrepancies between a state diagram and descriptive text, the state diagram prevails. The notation ++ after a variable indicates it is to be incremented by 1 . The notation -- after a variable indicates it is to be decremented by 1 . The notation $-=$ after a variable indicates that the counter value is to be decremented by the following value. The notation $+=$ after a variable indicates that the counter value is to be incremented by the following value. Code examples given in this clause adhere to the style of the "C" programming language. The vector notations used in the state diagrams for bit vector use 0 to mark the first received bit and so on (for example data<15:0>), following the conventions of 3.1 for bit ordering.

143.3.3.2 Application-specific parameter definitions

Some constants and variables in this sub-clause have characteristics that are application specific. For Nx25G-EPON specific parameter definitions refer to 143.4.1.3.

Editor's Note (to be removed prior to publication) in the future, references to other applications-specific parameters are to be added in this subclause.

143.3.3.3 Constants

Location: $\operatorname{Pg} 108 \mathrm{Cl}$ 143.3.3.3 Line 52. Change as marked.

```
ADJ_BLOCK_SIZE
    TYPE: {TBD}
    Value: {TBD}
    {description}
```

ADJ BLOCK SIZE
TYPE: integer
Value: application specific (see 143.3.3.2)
The ADJ BLOCK SIZE constant represents the block size (in EQs) that is used to adjust the rate between the
MAC and the PHY in the MCRS-based device.
Location: Pg 109 Cl 143.3.3.3 Add new definition.
NUM CH
TYPE: integer
Value: application specific (see 143.3.3.2)
The NUM CH constant represents the number of channels supported by an MCRS-based device.
Location: $\operatorname{Pg} 109 \mathrm{Cl}$ 143.3.3.3 Line 19. Change as marked.
RATE_ADJ_SIZE
TYPE: \{TBD\}
Value: \{TBD\}
\{description\}

```
RATE ADJ SIZE
    TYPE: integer
    Value: application specific (see 143.3.3.2)
    The RATE ADJ SIZE constant represents the number of EQs within the ADJ BLOCK SIZE block during which
    the MAC transmission is deferred. The effective MAC rate is equal to <nominal MA rate> > (1-
    RATE ADJ SIZE / ADJ BLOCK SIZE).
Location: Pg 109 Cl 143.3.3.4 Line 25. Change as marked.
ch
    TYPE: Z bitinteger
    The ch variable represents the index of a specific xMII channel orbound to an instance of MCRS Transmit or
    an MCRS Receive process. The values of ch range from 0 to (NUM CH - 1). Within each instance of MCRS
    Transmit or MCRS Receive process, the corresponding ENV_TX buffer, or ENV_RX buffer column-value of ch
    remains constant.
Location: Pg 109 Cl 143.3.3.4 Line 34. Change as marked.
ENV_TX[c][r]
    TYPE: array of 72-bit binary array-vectors
    The ENV_TX buffer is used to transfer information between the MCRS Input Process and the MCRS Transmit
    Process. Eachln this buffer, each cell, represented by the variables ENV_TX[c][r], in this bufferstores one EQ
    (a 72-bit vector) of information. The buffer has N columns(c) and two rows (r). The-The number of columns
    in ENV TX buffer is dependent on theNUM CH (see 143.3.3.3). The maximum number of channels
    supported. For }100\textrm{Gb}/\textrm{s}\mathrm{ devices }N=4\mathrm{ , for }50\textrm{Gb}/\textrm{s}\mathrm{ devices }N=2\mathrm{ , and for 25 Gb/s devices N=1.rows is 64,
    as determined by the size of EPAM field in Envelope Header (see 143.3.2). For some applications, fewer
    rows may be sufficient (see application-specific ENV TX definition in 143.3.3.2). The buffer is filled in a
    eyclic pattern row-by-row. The source LLID for each cell is determined by the-sequentially by the
    MCRS_CTRL[].request() primitive.Input process and is emptied in parallel by NUM CH instances of MCRS
    Transmit process. For additional details, refer to 143.2.5.3.
Location: \(\quad \mathrm{Pg} \quad 110 \mathrm{Cl}\) 143.3.3.4 Line 16. Add the following:
rCol
TYPE: integer
The rCol variable represents the ENV TX buffer column currently being read by the MCRS Transmit process. Each column corresponds to a separate transmission channel, i.e., a separate xMII interface.
Location: \(\operatorname{Pg} 110 \mathrm{Cl}\) 143.3.3.4 Line 17. Change as marked.
rRow
TYPE: 6-bit integer
The rRow variable fRow-represents the row in the ENV_TX buffer currently being read by the MCRS Transmit Processprocess. The value of this variable is synchronized to \(w R o w\) and is equal \(w R o w-1\).
```

Location: Pg 110
Cl 143.3.3.4
Line
31. Change as marked.

```
wCol
TYPE: Z bitinteger
The wCol variable represents the \(E N V_{-} T X\) buffer column currently being written by the MCRS Input Processprocess. Each column corresponds to a separate transmission channel, i.e., a separate xMII interface.
```


wRow

TYPE: 6-bit integer
The variable wRow represents the ENV_TX buffer row index currently being written by the MCRS Input Processprocess. The value of r Row is synchronized to this variable and is equal to $w R o w-1$.
Location: Pg 116 Cl 143.3.4.3 Line 5. Change as marked.

ENV_RX[c][r]
TYPE: array of 72-bit binary arrayvectors
The ENV_RX buffer is used to transfer information between the MCRS Receive Processprocess and the MCRS Output Processprocess. In this buffer, each cell, represented by the wablesvable $E N V _R X[c][r]$, in this buffer-stores one EQ (a 72 - bit vector) of information. The buffer has N columns (c) and M rows (r). The The number of columns in ENV $R X$ buffer is dependent on the-NUM CH (see 143.3.3.3). The maximum number of channels supported. For $100 \mathrm{~Gb} / \mathrm{s}$ devices $N=4$, for $50 \mathrm{~Gb} / \mathrm{s}$ devices $N=2$, and for $25-\mathrm{Gb} / \mathrm{s}$ devices $\mathrm{N}=1$. The value of M -rows is 64, as determined by the size of EPAM field in Envelope Header (see 143.3.2). For some applications, fewer rows may be sufficient (see application-specific but must be greater than or equal to the maximum value of EnvPam.ENV $R X$ definition in 143.3.3.2). The buffer is filled in a eyclic pattern row-by-rowparallel by theNUM CH instances of MCRS Receive process and is emptied sequentially by the MCRS Output process. For additional details, refer to 143.2.5.3.

Location: Pg 116 Cl 143.3.4.3 Line 31. Change as marked.
rCol
TYPE: Z-bit-integer
The rCol variable represents the $E N V_{-} R X$ buffer column currently being read by the MCRS Output Processprocess. Each column corresponds to a separate reception channel, i.e., a separate xMII interface.
rRow
TYPE: 6-bit integer
The rRow variable represents the $E N V_{-} R X$ buffer row index currently being read by the MCRS Output Process.process.

Location: Pg 116 Cl 143.3.4.3 Line 52. Add the following:
wCol
TYPE: integer
The wCol variable represents the ENV $R X$ buffer column currently being written by the MCRS Receive process. Each column corresponds to a separate reception channel, i.e., a separate xMII interface.
wRow
TYPE: 6-bit integer
The wRow variable represents the ENV $R X$ buffer row index currently being written by the MCRS Receive process.

Location: Pg 122 Cl 143.4.1.3 Line 13. Add the following:
143.4.1.3 Nx25G-EPON application-specific parameters
143.4.1.3.1 Constants

ADJ_BLOCK SIZE
Value: 257

NUM CH
Value: 1 for devices supporting only $10 \mathrm{~Gb} / \mathrm{s}$ or $25 \mathrm{~Gb} / \mathrm{s}$ operation over a single channel; 2 for devices supporting $50 \mathrm{~Gb} /$ s operation over two channels.

RATE ADJ SIZE
Value: 33

143.4.1.3.2 Transmit variables

ENV TX
Since there is no timing jitter or channel skew to be removed at the transmitting device, the size of ENV TX buffer can be reduced to only two rows. If this optimization is implemented, the variables rRow and wRow are represented by 1-bit integers.

143.4.1.3.3 Receive variables

ENV RX
In a typical Nx25G-EPON deployment scenario, the maximum timing jitter and channel skew are expected to be low enough to allow implementations of $E N V R X$ buffer with only 32 rows, as opposed to the default 64 rows. If such an optimization is implemented, the variables rRow and wRow are represented by 5-bit integers.

