Nx25G-EPON Receive PCS

Motivation \& assumptions

Transmit side PCS is fairly stable and we now know what the framing and burst structure look like
\square We need to stabilize the receive side
\square Assumptions:

- Delay due to FEC Decoding is constant (k plus the length of the decoded payload)
- The constant FEC delay is large compared to the length of the FEC CW

Review of burst

RS Tx
PCS Tx

MDI
|B|
 $\stackrel{\mathrm{FEC}}{\mathrm{CW}}+\mathrm{CWC}$MDI
|B|

Proposal

ONU Synchronization process (D1.2)

\square Per Draft 1.2

- Changed rx_buffer to PMAUDI[i] (alias for PMA_UNITDATA[i] <256:0>.indication)

PCS Receive process

\square Runs at line rate (257-bit blocks)
\square Detects start of burst \& end of burst
\square IDs everything between as data and sends to FEC Decoder
\square Sends end of burst to FEC decoder (important for short CW)

PCS RX variables, constants, functions

Constants

EDB
TYPE: 256-bit vector
Value: 0x 00
The EBD constant holds the value of the end of burst delimiter.

Variables

RxClk
TYPE: Boolean
The clear on read RxClk variable is set to True for each 257-bit block loaded into the PMA_Buf.

RxIdle
TYPE: Boolean
When True the RxIdle indicates that the PCS Receive process is in the idle state and is not receiving FEC encoded data.
SBD
TYPE: 256-bit vector
The variable holds the value of SP2 or SP3, depending on the most recently provisioned synchronization pattern (see \{142.2.2.2?\}).

Functions

FEC_Decode()
The FEC_Decode function to passes one 257-bit block to FEC decoder.

Add the following definition to Synchronizer

 variables removing rx_buffer.PMASI[i]
Alias for PMA_SIGNAL[i].indication
PMAUDI[i]
Alias for
PMA_UNITDATA[i]<256:0>.indication

PCS Output process

Output constants \& variables

Constants

FEC_CW_EQ_SZ
TYPE: integer
Value: 256
The FEC_CW_EQ_SZ represents the size of a FEC codeword in EQs
FEC_PAR_EQ_SZ
TYPE: integer
Value: 32
The FEC_PAR_EQ_SZ represents the size of the FEC parity word in EQs
IBI
TYPE: 66-bit vector
Value: $0 \times 2-0 A-0 A-0 A-0 A-0 A-0 A-0 A-0 A$
The IBI constant represents a 66-bit encoded word of Inter-Burst Idle EQ.
RA
TYPE: 66-bit vector
Value: 0x2-09-09-09-09-09-09-09-09
The RA constant represents a 66-bit encoded word of the rate adjustment EQ.

Variables

FEC_OUT
TYPE: array of 257-bit blocks
The FEC_OUT buffer holds one decoded payload from FEC decoder.

Variables (cont)

OutEqCtr
TYPE: integer
The OutEqCtr variable is represents the number of EQs output from the PCS from a single FEC codeword.
Out_Idle
TYPE: Boolean
When True the Out_Idle variable indicates the PCS Output process is in the idle state and not outputting Envelope data.
OutIdx
TYPE: integer
The OutIdx variable is an index to the OutBuf variable and has a value of between 0 and 3, inclusive.
OutClk
TYPE: Boolean
The clear on read variable CLK_IN is set to true on each falling edge of the xMII clock.
OutBuf[0:3]
TYPE: array of 66-bit vectors
This buffer holds four 66-bit vectors of 64B/66B encoded data.

Output functions

Functions

OutputVector()
This function inputs one EQ (72-bit block) and outputs two 36-bit vectors over the xMII. Control is not returned to the calling state until after the second 32 -bit vector is sent.

RxXcode()
This function inputs one 256B/257B encoded block, transcodes it into four 64B66B encoded blocks and returns the result.

Decode()
This function input one 64B/66B encoded block, performs the decoding function as described in 49.2.11 and Figure 49-17, and returns the resultant 72-bit vector.

Descramble()
This function inputs one 257-bit vector, performs the descrambling function described in 49.2.10 and returns the result.

Fifo.GetHead (see \{142.2.2.5.3?\})

PCS FBD

Update to
Figure 142-2

THANK YOU

1
IBI
2
IBI
Data
3
IBI
Data
Data
4
IBI
Data
\cdots
Parity
5
IBI
Data
\cdots
Parity
Data
6
IBI
Data
\cdots
Parity
Data
Parity
IBI

