Comment Type E Comment Status D EZ

Suggested Remedy
Add MAC = MEDIA ACCESS CONTROL
Add that is the receiver and not the transmitter that is being configured.

Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.

Changes Notes to NOTE style here and anywhere else needed in the Figures.

Comment Type T Comment Status D Registers

Lo, William Axonne Inc.

Comment Type E Comment Status D EZ

Wienckowski, Natalie General Motors

Inconsistent text - it is not necessary to say “writes ignored” for RO bits

Suggested Remedy

Change: Value always 0, writes ignored
To: Value always 0

Proposed Response Response Status W
PROPOSED ACCEPT.

Lo, William Axonne Inc.

Comment Type E Comment Status D EZ

Wienckowski, Natalie General Motors

Inconsistent text - it is not necessary to say “writes ignored” for RO bits

Suggested Remedy

Change: Value always 0, writes ignored
To: Value always 0

Proposed Response Response Status W
PROPOSED ACCEPT.

Lo, William Axonne Inc.

Comment Type T Comment Status D Registers

The 7 bit user field does not exist.
This is a holdover from 1000BASE-T1.
Looking at figure 149-10 octet 10 bits 7 to 1 were not used in 1000BASE-T1
but 4 of the 7 bits are now used for interleave and precode.

Suggested Remedy

This is the general description what to do and editor has editorial license to make other
changes to make the text consistent.
1) Move register 1.2311.12:11 to 1.2311.5:4. Search the document to make
the register move consistent.
2) 1.2311.8:6 is the 3-bit user defined field
3) 1.2311.15:9 is Reserved
4) Update table 45-155c to match and any other titles/headings.
5) Change the 3 reserved bits in Table 149-10 (page 138) to User Defined Field
It should be a single box and not 3 separate boxes.

Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.

For 1.2311.10:4
Change: “User field” to “Reserved”.
Change: “7-bit user defined field to send to the link partner” to “Value always 0”, and
Change: “R/W” to “RO”.

Lo, William Axonne Inc.

Lo, William Axonne Inc.
Clarify that is it the receiver and not the transmitter that is being configured.

Suggested Remedy

Change:
receiver precoder setting requested by
To:
receiver precoder setting of

The receiver doesn't have a precoder. The receiver isn't being configured. The device requests this setting of the link partner's transmitter. The text is clear.

The 7 bit user field does not exist. This is a holdover from 1000BASE-T1. Looking at figure 149-10 octet 10 bits 7 to 1 were not used in 1000BASE-T1 but 4 of the 7 bits are now used for interleave and precode.

Suggested Remedy

This is the general description what to do and editor has editorial license to make other changes to make the text consistent. 1) Move register 1.2312.12:11 to 1.2312.5:4. Search the document to make the register move consistent. 2) 1.2312.8:6 is the 3-bit user defined field from the link partner 3) 1.2312.15:9 is Reserved 4) Update table 45-155d to match and any other titles/headers.

For 1.2312.10:4 Change: "Link partner user field" to "Reserved" and Change: "7-bit user defined field from the link partner" to "Value always 0".

Clarify that is it the transmitter and not the receiver that is being configured.

Suggested Remedy

Insert after first sentence the following clarifying clause:
To: , and controls the transmitter precoder setting of the PHY.

Clause 149 makes it clear that only the transmitter implements a precoder. This is unnecessary text.
P802.3 D1p2

Layer Specifications and Management Parameters for Greater Than 1 Gb/s Automotive Ethernet 3rd T:

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>45.2.1.197</td>
<td>39</td>
<td>43</td>
<td>72</td>
</tr>
<tr>
<td>den Besten, Gerrit</td>
<td>NXP Semiconductors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type: T Comment Status: D

Registers

"The number is in offset two's complement notation, with 0.0 dB represented by 0x8000." I'm not aware of a format called 'offset two's complement'. I know "two's complement" and "offset binary". From the context it is clear that the latter is meant.

Suggested Remedy

Propose to replace "offset two's complement" with "offset binary"

Proposed Response

Response Status: W

PROPOSED ACCEPT.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>98</td>
<td>56</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>LEE, JUHO</td>
<td>Hanyang University and Hyundai Motor Company</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type: T Comment Status: D EEE

The latest asymmetric transmission proposals have following problems. 1. The EEE mode should be used for low speed transmission. 2. Even if data traffic at low speed have to increase, the data traffic should be transmitted only in a predetermined period. This may cause a buffer overflow. 3. There is a delay time when sleep mode is switched on. During this delay time, PHY can not cover the traffic coming from the MAC layer. In this situation, frame loss or collision problems can occur.

Suggested Remedy

We would like to suggest a way to use AN(Auto-negotiation) for asymmetric transmission. Generally, traditional AN is self-configuring to use the highest speed that can be supported by the common links between end devices. For asymmetric transmission, a new AN mode is proposed, which supports the lowest common link speed (or a specific link rate like 10 Mbps) between end devices. This can reduce the BER and increase the energy saving and the reliability of low-speed data. In order to add the new AN mode, providing either one of the uplink and downlink directions at a low speed in AN for asymmetric data transmission mode. And power saving in some cases while using AN. Because the AN can exchange information with the MAC layer, the MAC measures the queue characteristics and frequency of use to determine the trigger for the asymmetric transmission and instructs the AN to set the asymmetric uplink / downlink rate. As the queue changes, it can be switched to a symmetric or asymmetric transmission, and this decision is made entirely by the MAC.

Proposed Response

Response Status: W

PROPOSED REJECT.

The comment description does not contain sufficient detail so that the TF can understand the specific changes requested by the commenter. In addition, the suggested remedy in the comment does not contain sufficient detail so that the TF can understand the specific changes requested by the commenter.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>104.1</td>
<td>57</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Wienckowski, Natalie</td>
<td>General Motors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type: E Comment Status: D EZ

Editor's note that is to be removed prior to draft 2.0. Remove now so it isn't a change in D1.4 when WG ballot requested.

Suggested Remedy

Delete Editor's note.

Proposed Response

Response Status: W

PROPOSED ACCEPT.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general

COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn

Pa 57 Page 3 of 21

Li 8 4/11/2019 2:41:38 PM

SORT ORDER: Page, Line
Wienckowski, Natalie
General Motors

Comment Type: E **Comment Status**: D
Suggested Remedies
Move: Replace Figure 125-1 (as modified by IEEE Std 802.3cb-2018) with the figure found below, which adds 2.5GBASE-T1 and 5GBASE-T1. to be just before Figure 125-1.

Proposed Response
Response Status: W
PROPOSED ACCEPT.

Wienckowski, Natalie
General Motors

Comment Type: E **Comment Status**: D
Suggested Remedies
Missing Abreviation expansion

Proposed Response
Response Status: W
PROPOSED ACCEPT.

Tu, Mike
Broadcom

Comment Type: T **Comment Status**: D
Suggested Remedies
Change from: "...PHY advertises its MultiGBASE-T1 OAM capability as described in 149.3.8.*
To: "...PHY advertises its MultiGBASE-T1 OAM capability as described in 149.4.2.4.5*.

Proposed Response
Response Status: W
PROPOSED ACCEPT.

den Besten, Gerrit
NXP Semiconductors

Comment Type: T **Comment Status**: D
Suggested Remedies
In reality there is a piece of the channel between the MDI connector and the transceiver which is not accounted for in link segment IL & RL. Although the IEEE PHYs set mandatory specs for the MDI reference point, which makes a lot of sense, I think it would be useful to add informative specs for IL and RL for the part of the channel behind the MDI. IMO, the assumptions for IL & RL for this module-internal channel part, used to define the spec, should be mentioned.

Proposed Response
Response Status: W
PROPOSED REJECT.
Lo, William
Axonne Inc.

Comment Type T Comment Status D EZ
Duration missing the L term
Suggested Remedy
Change 320 ns to L x 320 ns

PROPOSED ACCEPT IN PRINCIPLE.

Change:bits (duration 320 ns at 10 Gb/s).
To: bits. (The duration of the superframe is L x 320 x S ns.)

Graba, Jim
Broadcom

Comment Type T Comment Status D EZ
It isn't clear in this line that Sleep is aligned with a super frame. In 149.3.2.2.21, page 94, line 49-53 the alignment is clear.
Suggested Remedy
Clarify the Sleep alignment in 149.3.3. Replace "Following this event a sleep signal is transmitted by the PMA" with "Following this event the PMA transmits the sleep signal starting at the beginning of the next superframe."

PROPOSED ACCEPT.

Graba, Jim
Broadcom

Comment Type T Comment Status D EEE
Alert isn't low frequency. See 149.4.2.2, page 135, lines 19-20.
Suggested Remedy
Replace "low frequency" with "PN sequence".

PROPOSED ACCEPT IN PRINCIPLE.

The LPI mode is a method for implementing EEE. However, when small data is periodically transmitted with a gap, the PHY repeatedly enters and leaves the LPI mode, resulting in energy loss. Also, the refresh signal in LPI mode only maintains a connection between the sender and the receiver, but does not transmit any data. In order to solve this frequent LPI transition problem, part of the unused OAM fields can be used to adjust the transmission speed depending on the change of data amount in buffers. If PHY transmit quiet time block after the our proposed OAM field, PHY can transmit PAM4 data block with information and operate various speeds. Therefore we propose OAM transmission for various speed transmission.

Suggested Remedy
Our proposed solution uses the D9 bit field of the previously transmitted OAM frame (figure 149-17) to monitor the buffer accumulated in the PHY and adjust the transmission rate. When D9 = 0, this defines no change in the amount of data to be transmitted and the PHY transmits at the same rate at the next data transmission. When D9 = 1, this indicates that there is a change in the amount of data and that the PHY immediately transmits OAM symbol 0 after parity bit transmission. OAM symbol 0 is determined to configure the link speed at either 5 Gbps or 2.5 Gbps speed on 10 Gbps link based on the bit combinations of D4 and D5.
1. <D4, D5> = <0, 0> 10 Gbps
2. <D4, D5> = <0, 1> 5 Gbps
3. <D4, D5> = <1, 0> 2.5 Gbps
In case of 5 Gbps, the link mode of PHY will be on the quiet time of 64 bits, which is equal in bit length one PAM4 data block. The quiet time is a time period with no data transmission. In case of 2.5 Gbps, the link mode of PHY will be on the quiet time of 192 (64 x 3) bits, which is equal to one data block. And the length and frequency of quiet time and PAM4 data blocks are equal for both cases.

PROPOSED REJECT.

The comment description does not contain sufficient detail so that the TF can understand the specific changes requested by the commenter. In addition, the suggested remedy in the comment does not contain sufficient detail so that the TF can understand the specific changes requested by the commenter.
Comment 149 - SC 149.1.3

Type: Technical correction
Comment: In Figure 149-2, "pcs_data_mode" is missing.
Suggested Remedy: In Figure 149-2:
1. Add an arrowed line for "pcs_data_mode", coming out of the "PHY CONTROL" block, and going into the "PCS_TRANSMIT" block.
2. If proposal in "tu_3ch_02_0419.pdf" to make pcs_data_mode available even without EEE is adopted, then make this a SOLID line. Otherwise make this a DASHED line.

Proposed Response: PROPOSED ACCEPT IN PRINCIPLE.

Response Status: Written

Notes: Final implementation depends on outcome of comments #57 & #58.

Comment 149 - SC 149.2.2

Type: Technical correction
Comment: In Figure 149-2:
1. Add an arrowed line for "PMA_PCSDATAMODE.indication" from the PMA block into the PCS block.
2. If pcs_data_mode is made available for non-EEE mode as well, then make this a SOLID line. Otherwise make this a DASHED line.

Suggested Remedy: In Figure 149-3:
1. Add an arrowed line for "PMA_PCSDATAMODE.indication" from the PMA block into the PCS block.
2. If pcs_data_mode is made available for non-EEE mode as well, then make this a SOLID line. Otherwise make this a DASHED line.

Proposed Response: PROPOSED ACCEPT IN PRINCIPLE.

Response Status: Written

Notes: Final implementation depends on outcome of comments #57 & #58.

Comment 149 - SC 149.2.2.3.1

Type: General correction
Comment: Changes submitted in Vancouver modified the text so that link synchronization PN sequence for Alert is sent directly to PMA rather than via tx_symb, as such we need to remove ALERT from this primitive.

Suggested Remedy: Change definition of PMA_UNITDATA.request(tx_symb) to the following: During transmission, the PMA_UNITDATA.request simultaneously conveys to the PMA via the parameter tx_symb the value of the symbols to be sent over the MDI. The tx_symb may take on one of the following values:
\[-1, -1/3, +1/3, +1\] in normal operation
\[0\] when zeros are to be transmitted in the following two cases:
1) when PMA_TXMODE.indication is SEND_Z during PMA training,
and
2) after data mode is reached, the transmit function is in the LPI transmit mode, and lpi_tx_mode is QUIET.

Proposed Response: PROPOSED ACCEPT.
There is no space between the number and the text.

Suggested Remedy
Add a tab in the paragraph format to space the text over from the number.

PROPOSED ACCEPT.

Before 149.2.2.2.9, insert the following (based on 55.2.2.11):

149.2.2.8a PMA_PCSDATAMODE.indication
–This primitive indicates whether or not the PCS state diagrams are able to transition from their initialization states. The pcs_data_mode variable is generated by the PMA PHY Control function. It is passed to the PCS Control function via the PMA_PCSDATAMODE.indication primitive.

–149.2.2.8a.1 Semantics of the primitive
–PMA_PCSDATAMODE.indication (pcs_data_mode)

–149.2.2.8a.2 When generated
–The PMA PHY Control function generates PMA_PCSDATAMODE.indication messages continuously.

–149.2.2.8a.3 Effect of receipt
–Upon receipt of this primitive, the PCS performs its transmit function as described in 149.3.2.2.

PROPOSED ACCEPT.

PROPOSED ACCEPT IN PRINCIPLE.
Final implementation depends on outcome of comments #57 & #58.

PROPOSED ACCEPT.

"For output symbols the PMA transmit process shall map" - the gray mapping is described as a PCS function. Also, the selectable precoder and PAM4 encoding both say PMA when described as a PCS function, (149.3.2.2.19, page 93, line 47 and 149.3.2.2.20 page 94 line 24).

Suggested Remedy
Change "PMA transmit" to "PCS transmit" on page 93, lines 17 and 47, and page 94 line 24.

PROPOSED ACCEPT.
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Commenter</th>
<th>Proposed Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>149.3.2.2.21</td>
<td>95</td>
<td>9</td>
<td>E</td>
<td>D</td>
<td>Tu, Mike Broadcom</td>
<td>There is no "PCS_Data" state. It probably meant the "SEND_DATA" state. However "PCS_Data" might be a better name for this state. Suggested Remedy Option 1. Replace this "PCS_Data" by "SEND_DATA" Option 2. Replace all "SEND_DATA" and "PCS_Data" by "PCS_Data" and "PCS_DATA" respectively throughout D1.2</td>
</tr>
<tr>
<td>149</td>
<td>149.3.4.1</td>
<td>98</td>
<td>35</td>
<td>T</td>
<td>D</td>
<td>Lo, William Axonne Inc.</td>
<td>This is a bunch of changes in many different sections that are related to partial frames. This is clarifying text, table, and figure that makes no technical changes other than one on slide 10. We use tx_alert_start to indicate the frame numbers where alert should start, it is more aligned with other variables to use tx_alert_active</td>
</tr>
<tr>
<td>149</td>
<td>149.3.5.1</td>
<td>100</td>
<td>16</td>
<td>T</td>
<td>D</td>
<td>Benyamin, Saied Aquantia</td>
<td>The sentence seems to be missing some words Suggested Remedy Change from: ALERT, a four RS-FEC frame, shall start at the beginning of any eighth PHY frame boundary starting at the beginning of the frame following a refresh PHY frame. To: ALERT, a four RS-FEC frame long sequence, shall start at the beginning of any eighth PHY frame boundary starting at the beginning of the frame following a refresh PHY frame.</td>
</tr>
<tr>
<td>149</td>
<td>149.3.5.1</td>
<td>100</td>
<td>16</td>
<td>T</td>
<td>D</td>
<td>Benyamin, Saied Aquantia</td>
<td>Mechanism to prevent partial refresh is not necessary since refresh is only one frame long.</td>
</tr>
</tbody>
</table>
Wienckowski, Natalie General Motors

Comment Type E Comment Status D EZ

Missing period at end of sentence.

Suggested Remedy

Add period after rx_raw<71:40>

Proposed Response Response Status W

PROPOSED ACCEPT.

McClellan, Brett Marvell

Comment Type T Comment Status D EEE

alert_detect is defined as primitive from the PMA, PMA_ALERTDETECT.indication(alert_detect). However, PMA_ALERTDETECT.indication(alert_detect) isn't actually a defined PMA primitive.

Suggested Remedy

on page 80 line 26, insert

"149.2.2.11 PMA_ALERTDETECT.indication(alert_detect) The parameter alert_detect conveys to the PCS receive function information regarding the detection of the LPI alert signal by the PMA receive function. The criterion for setting the parameter alert_detect is left to the implementer. 149.2.2.11.1 Semantics of the primitive

PMA_ALERTDETECT.indication(alert_detect)

The alert_detect parameter can take on one of two values of the form:
TRUE The alert signal has been reliably detected at the local receiver.
FALSE The alert signal at the local receiver has not been detected.

149.2.2.11.2 When generated

The PMA generates PMA_ALERTDETECT.indication messages to indicate a change in the alert_detect status.
149.2.2.11.3 Effect of receipt

The effect of receipt of this primitive is specified in 149.3.2.3, Figure 149-17."

Proposed Response Response Status W

PROPOSED ACCEPT.

Benjamin, Saied Aquantia

Comment Type T Comment Status D EEE

Mechanism to prevent partial refresh is not necessary since refresh is only one frame long.

Suggested Remedy

change lpi_tx_mode from:
The variable is set to QUIET when (tx_lpi_qr_active * (!tx_refresh_active + tx_lpi_initial_quiet)) to:
The variable is set to QUIET when (tx_lpi_qr_active * !tx_refresh_active)

Proposed Response Response Status W

PROPOSED ACCEPT.

Wienckowski, Natalie General Motors

Comment Type E Comment Status D EZ

Missing period at end of sentence.

Suggested Remedy

Add period after rx_raw<71:40>

Proposed Response Response Status W

PROPOSED ACCEPT.

McClellan, Brett Marvell

Comment Type T Comment Status D EEE

alert_detect is defined as primitive from the PMA, PMA_ALERTDETECT.indication(alert_detect). However, PMA_ALERTDETECT.indication(alert_detect) isn't actually a defined PMA primitive.

Suggested Remedy

on page 80 line 26, insert

"149.2.2.11 PMA_ALERTDETECT.indication(alert_detect) The parameter alert_detect conveys to the PCS receive function information regarding the detection of the LPI alert signal by the PMA receive function. The criterion for setting the parameter alert_detect is left to the implementer. 149.2.2.11.1 Semantics of the primitive

PMA_ALERTDETECT.indication(alert_detect)

The alert_detect parameter can take on one of two values of the form:
TRUE The alert signal has been reliably detected at the local receiver.
FALSE The alert signal at the local receiver has not been detected.

149.2.2.11.2 When generated

The PMA generates PMA_ALERTDETECT.indication messages to indicate a change in the alert_detect status.
149.2.2.11.3 Effect of receipt

The effect of receipt of this primitive is specified in 149.3.2.3, Figure 149-17."

Proposed Response Response Status W

PROPOSED ACCEPT.

Tu, Mike Broadcom

Comment Type T Comment Status D pcs_data_mode

pcs_data_mode already defined in 149.4.4.1

Suggested Remedy

Delete line 37 to line 41.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Delete page 102 lines 37 to 41.

Add to page 101 line 49:
Variable set by the PMA PHY Control function. See 149.4.4.1.

This depends on disposition of other pcs_data_mode comments, especially #57 & #58.

Benjamin, Saied Aquantia

Comment Type T Comment Status D EEE

Mechanism to prevent partial refresh is not necessary since refresh is only one frame long.

Suggested Remedy

Take out definition of tx_lpi_full_refresh

Proposed Response Response Status W

PROPOSED ACCEPT.
Cl 149 SC 149.3.6.2.2 P 103 L 10 # 68
Benyamin, Saied Aquantia
Comment Type T Comment Status EEE
Mechanism to prevent partial refresh is not necessary since refresh is only one frame long.
SuggestedRemedy
Take out definition of tx_lpi_initial_quiet
Proposed Response Response Status W
PROPOSED ACCEPT.

Cl 149 SC 149.3.6.2.3 P 103 L 30 # 17
Wienckowski, Natalie General Motors
Comment Type E Comment Status PCS
Missing period at end of sentence.
SuggestedRemedy
Add period after rfer_timer_done = TRUE
Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.

Cl 149 SC 149.3.7.1 P 106 L 23 # 56
Tu, Mike Broadcom
Comment Type T Comment Status pcs_data_mode
Make sure "pcs_status" is only set to TRUE after entering data mode.
SuggestedRemedy
Change the second sentence to: "It is only true if pcs_data_mode is true, block_lock is true, and hi_rfer is false."
Proposed Response Response Status W
PROPOSED ACCEPT.
"Editor's note to be removed in draft 1.3: The OAM request to exit LPI is unneeded. Commenters are requested to provide text and edits necessary to cleanly remove this function and describe the local fault mechanism for the RS to signal exit from LPI."

This function was added in Clause 97 (1000BASE-T1) to cause the local device to exit low power idle when the link partner receiver is having trouble tracking the low power idle refresh signaling. However this function may not be necessary in an XGMII based system.

Also the mechanism of exiting LPI is not described. An XGMII based PHY could generate Local Fault signals toward the Reconciliation Sublayer in a low SNR condition. The RS would respond by sending Remote Faults to the link partner, causing the link partner to stop sending LPI and start sending Idle until the fault condition is cleared. The downside to this mechanism is that the data link is interrupted in the path from the link partner to the local device.

I propose we keep the current mechanism of exiting LPI based on the OAM SNR indication but clarify how the LPI is exited.

Suggested Remedy

on page 69 line 42

Change: "When the PHY Health status received from the link partner indicates that LPI is insufficient to maintain PHY SNR, the PHY may temporarily exit LPI mode and send idles."

To: "When the PHY Health status received from the link partner indicates that LPI is insufficient to maintain PHY SNR, the PHY shall temporarily exit LPI mode and send idles by replacing an LPI symbol group received at the XGMII with Idle symbols until the link partner no longer indicates insufficient SNR."

Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.

TFTD.

149.1.3.3 isn't the right place for this requirement, as it is an overview section.

Consider changes to Figure 149-18 (EEE Transmit State Diagram) which would cause the transmitter to exit quiet-refresh when the PHY-Health status from the link partner requests it.

(possible late presentation)
Lo, William
Axonne Inc.

Comment Type: T
Comment Status: D
OAM

The loops around figure 149-24 are running at infinite speed and is not paced.
I think the intention is to check the loop once per RS Frame.
If we don't do this then tx_rec will keep incrementing once rf_valid is false.

Suggested Remedy
Change all 3 instances of UCT to RX_FRAME

Proposed Response
Response Status: W
PROPOSED ACCEPT IN PRINCIPLE.

These are corrected in the proposal for Comment #19. This is only needed if Comment #19 is not accepted.

Tu, Mike
Broadcom

Comment Type: T
Comment Status: D

In Figure 149-26, "pcs_data_mode" is missing

Suggested Remedy
In Figure 149-26:
1. Add an arrowed line coming out of the PHY CONTROL block, going up toward the PMA SERVICE INTERFACE.
2. If pcs_data_mode is made available for non-EEE mode as well, then make this a SOLID line. Otherwise make this a DASHED line.

Proposed Response
Response Status: W
PROPOSED ACCEPT IN PRINCIPLE.

Final implementation depends on outcome of comments #57 & #58.

Benymain, Said
Aquantia

Comment Type: T
Comment Status: D
PMA

Partial phy frame count (PFC24) rolls over after 2^24. Because the EEE uses 96*4 partial phy frames per QR cycle, we have to make sure that the PFC24 rolls over at a multiple of this count.

Suggested Remedy
Add the following paragraph:
The PFC24 count must roll over to 0 after the count of 16776959 to align with EEE QR cycle.

Proposed Response
Response Status: W
PROPOSED ACCEPT.

Zimmerman, George
CME Consulting/ADI, APL Group, Aquantia, BMW, Ci

Comment Type: T
Comment Status: D
SEND_S

Editor's note flags need for consistent usage of send_s. In most cases send_s is a signal. Confusion comes from the way the input to the PMA transmit comes from the link synchronization machine, and the definition of sync_tx_mode, which appears that it should be using the message sync_tx_symb (which is not set anywhere).

Suggested Remedy
Adopt changes in zimmerman_3ch_01_0419.pdf

Proposed Response
Response Status: W
PROPOSED ACCEPT IN PRINCIPLE.

Adopt changes in zimmerman_3ch_01a_0419.pdf

Wienckowski, Natalie
General Motors

Comment Type: E
Comment Status: D
SEND_S

Editor's note to be removed prior to draft 1.3.

Suggested Remedy
Delete Editor's note.

Proposed Response
Response Status: W
PROPOSED ACCEPT IN PRINCIPLE.

Review at end of comment resolution and determine whether work on the SEND_S text is still needed.
Alert Sequence generator can start at a random PN sequence seed when alert starts. This can add a random delay to the correlator trigger. I propose that we reset the sequence to a known value at the start of alert.

Suggested Remedy

Change from:
The PN sequence generator shift registers shall be reset to a non-zero value upon entering into the TRANSMIT_DISABLE state (see Figure 149–31). to:
The PN sequence generator shift registers shall be reset to a value of S[7:0]=00000001 upon entering into the TRANSMIT_DISABLE state (see Figure 149–31) or on the transmission of first symbol of alert sequence. The receiver may not necessarily receive a continuous PN sequence between separate periods of SEND_S.

Proposed Response

The PN sequence generator shift registers shall be reset to a value of S[7:0]=0000001 upon entering into the TRANSMIT_DISABLE state (see Figure 149–31) or on the transmission of first symbol of alert sequence.

The PHY Control state diagram and the Link Monitor state diagram will result in conflicted state machines. Also if the link is interrupted after entering the SEND_DATA state, the PHY will falsely report the link status=OK for 100msec while the data connection had already been lost.

Suggested Remedy

Adopt the changes as proposed in "tu_3ch_02_0419.pdf"

Proposed Response

The PHY Control state diagram and the Link Monitor state diagram will result in conflicted state machines. Also if the link is interrupted after entering the SEND_DATA state, the PHY will falsely report the link status=OK for 100msec while the data connection had already been lost.

Proposed Response

Adopt the changes as proposed in "tu_3ch_02_0419.pdf"
To avoid the possibility of TX_TCLK_175 being interpreted as divide by 32 for all speeds, add a clarifying statement.

Suggested Remedy
Change TX_TCLK_175 is equal to 5625 MHz divided by 32 to the symbol baud rate divided by 32, 16, and 8 for 10GBASE-T1, 5GBASE-T1, and 2.5GBASE-T1 respectively.

PROPOSED ACCEPT IN PRINCIPLE.
Change: TX_TCLK_175 is equal to 5625 MHz divided by 32
To: TX_TCLK_175 is equal to 5625 x S MHz divided by 32 x S.

Test mode 2 is for transmitter jitter testing on MDI when transmitter is in MASTER timing mode. When test mode 2 is enabled, the PHY shall transmit a continuous pattern of JP03A (as specified in Clause 94.2.9.1) or JP03B (as specified in Clause 94.2.9.2) with the transmitted symbols timed from its local clock source. This needs to be the same solution as comment #22.

PROPOSED ACCEPT IN PRINCIPLE.
Replace current definition of Test mode 2, page 151 lines 41-43 with - Test mode 2 is for transmitter jitter testing on MDI when transmitter is in MASTER timing mode. When test mode 2 is enabled, the PHY shall transmit a continuous pattern of JP03A (as specified in Clause 94.2.9.1) or JP03B (as specified in Clause 94.2.9.2) with the transmitted symbols timed from its local clock source.

This needs to be the same solution as comment #22.
Comment Type: T, Comment Status: D, Test Modes

Current the droop requirement is specified as "the magnitude of both the positive and negative droop shall be less than 15%, measured with respect to an initial value at 4 ns after the zero crossing and a final value at 16 ns after the zero crossing (12 ns period)." This spec is currently independent of the speed, which makes this period contain 4x more symbols at 10Gbps than at 2.5Gbps. This implies a significantly larger BLW at 2.5Gbps which increases the peak differential amplitude. If the measurement period is made a fixed number of symbols or a period length scaling by 1/S, the signal impact of droop is equivalent for all rates.

Suggested Remedy

Propose to scale the droop measurement period with the speed, so replace 4, 16 and 12, by 4/S ns to 16/S ns (12/S ns period). Alternatively, this measurement period can be specified as "initial value 24 symbol periods after the zero-crossing and a final value 96 symbol periods after a zero-crossing (72 symbol periods)."

Proposed Response **Response Status** W

PROPOSED ACCEPT IN PRINCIPLE.

Change: initial value at 4 ns after the zero crossing and a final value at 16 ns after the zero crossing (12 ns period).

To: initial value of 24 symbol periods after the zero-crossing and a final value of 96 symbol periods after the zero-crossing (72 symbol periods).

Comment Type: T, Comment Status: D, Test Modes

"The band-pass bandwidth of the measurement device shall be larger than 200 MHz." This is probably based on a divide-by-32 clock, that would run at 5625/32=175.8MHz, so 200MHz wouldn't be limiting in that case. Note that higher frequency jitter is partly masked in this case.

Suggested Remedy

Propose to adapt test mode 2 to a symbol rate toggling {+1} {-1} pattern and measure jitter with a bandwidth of the measurement device of at least Fmax.

Proposed Response **Response Status** W

PROPOSED REJECT.

The proposed change in the comment does not contain sufficient detail so that the TF can understand the specific changes requested by the commenter. In addition, the proposed change in the comment does not contain sufficient detail so that the TF can understand the specific changes requested by the commenter.

Comment Type: T, Comment Status: D, Test Modes

The minimum transmit power should be reduce to -2 dBm, in order to account for potential implementation losses.

Suggested Remedy

Change from: "the transmit power shall be in the range of -1 dBm to 2 dBm ..." To: "the transmit power shall be in the range of -2 dBm to 2 dBm ..."

Proposed Response **Response Status** W

PROPOSED ACCEPT IN PRINCIPLE.

TFTD. Needs to have the same solution as comment #73.

Comment Type: T, Comment Status: D, Test Modes

Transmit power limits are currently by accident set to -1 to 2dBm. My proposal during the last F2F was -0.5 to 2.5dBm, with support from multiple silicon suppliers. Mike indicated that he preferred to keep a +/-2dB range instead of a +/-1.5dB range, but nobody intended to shift the nominal power level

Suggested Remedy

Change range into -0.5 to 2.5dBm

Proposed Response **Response Status** W

PROPOSED ACCEPT IN PRINCIPLE.

TFTD. Needs to have the same solution as comment #59.
Transmit PSD mask. During the Vancouver meeting I've presented modifications to the Transmit PSD mask. There have been interactive discussions on this with some modifications to the material. The decision on this topic was postponed to the next meeting to give people time to review internally.

Suggested Remedy

Propose to change transmit PSD mask according to the attached presentation.

Proposed Response

PROPOSED ACCEPT IN PRINCIPLE.

TFTD. Task Force to hear presentation DenBesten_3ch_01_0419.pdf and decide.

Comment Type T

Comment Status D

Transmit PSD

den Besten, Gerrit NXP Semiconductors

Comment: The TBDs need to be filled in, and when doing so, the structure of the sentence needs to be changed to reflect that with a constant alien crosstalk coupling the noise level will shift. Suggest the numbers for 10GBASE-T1 in sederat_3ch_0419.pdf, adjusted for 2.5G and 5GBASE-T based purely on the difference in disturbing PSD levels, not on receiver noise tolerance, which would require more work on cabling and different cable specs for these technologies.

Suggested Remedy

Replace "bandwidth of TBD MHz, and magnitude of TBD dBm/Hz" with "bandwidths and magnitudes shown in Table 149-xx" Insert Table 149-xx (autonumbered) after Figure 149-41, with entries (commas between columns, semicolons for rows)

- Header row: "PHY Type", "Noise Bandwidth (MHz)", "Added Noise at MDI (dBm/Hz)"
- and body rows:
 - 10GBASE-T1, 3000 MHz, -152 dBm/Hz;
 - 5GBASE-T1, 1500 MHz, -149 dBm/Hz;
 - 2.5GBASE-T1, 750 MHz, -146 dBm/Hz;

Proposed Response

PROPOSED ACCEPT.

Comment Type E

Comment Status D

Link Segment

Wienckowski, Natalie General Motors

Comment: The test is performed with a noise source consisting of a signal generator with Gaussian distribution, bandwidth of TBD MHz and magnitude of TBD dBm/Hz.

Suggested Remedy

Delete Editor's note.

Proposed Response

PROPOSED ACCEPT IN PRINCIPLE.

Comment Type T

Comment Status D

Test Modes

Zimmerman, George CME Consulting/ADI, APL Group, Aquantia, BMW, Ci

Comment: Comment 228 from draft 1.1 was implemented incorrectly. Accepted resolution specified the noise level is at the MDI of the DUT. Language also needs editorial clean up. The proposed response is aligned with accepted language in 802.3cg D3p0.

Suggested Remedy

Change: "The test is performed with a noise source consisting of a signal generator with Gaussian distribution, bandwidth of TBD MHz and magnitude of TBD dBm/Hz."

to: "The test is performed with a noise source such that noise with a Gaussian distribution, bandwidth of TBD MHz, and magnitude of TBD dBm/Hz is present at the MDI of the DUT."

Editorial license to fill in the TBDs based on other comments.

Proposed Response

PROPOSED ACCEPT IN PRINCIPLE.

Comment Type E

Comment Status D

Test Modes

Zimmerman, George CME Consulting/ADI, APL Group, Aquantia, BMW, Ci

Comment: Review at end of comment resolution and determine whether work on the Alien Crosstalk spec is still needed.
For 10Gbps operation the worst-case link segment IL and RL, combined with module-
internal losses, driver level tolerance, and termination impedance range, makes that echo
magnitude at Nyquist can be >40x the received signal magnitude. Scanning through
previously presented RL data, the main reasons for the fairly loose link segment RL specs
are the issues towards 5.5GHz (which are eliminated now as Fmax is always 4GHz or less)
and the inclusion of a 'first connector profile'. All cases with the second and third connector
profiles (DiBiaso_3ch_01_0518.pdf) pass with much margin. I think we should consider to
tighten the link segment return loss spec for 10Gbps at high attenuation and not
unnecessarily burden the transceiver.

Suggested Remedy
Propose to add an extra limit curve to 10Gbps_RL:
N=-1 for IL>24dB
(brings first corner to 960MHz and HF plateau to 15dB)

Note that this situation does not occurs for cables <12m.

Proposed Response Response Status W
PROPOSED REJECT.

Need feedback from cable vendors.
The commenter may choose to provide a presentation at a future meeting with data to
support this and may choose to submit a comment at WG ballot.

The current coupling attenuation spec, originating from contribution
mueller_3ch_02a_0518.pdf, might be insufficient to ensure signal integrity. On slide 4 it
states that "With existing cables and connectors an introduced differential noise level of a
few mV (4mV or less) is achievable in a BCI test with 200mA interfering current," which
seems based on … Note that the suggested templates in that ppt don't seem to have a
6dB/octave slope. Which BCI level is assumed achievable by these transceivers? And is
this 4mV safeguarded by the coupling attenuation template or is this just these actual
cables showed that result? Note that these cables are apparently better than the specified
template. The differential signal magnitude at Nyquist can be about the same level of a few
mV. I think we should ensure that the injected interfering differential signal component (due
to coupling attenuation) should be at least 6dB below the signal level. Therefore it seems
that the coupling attenuation spec needs to be tightened. Looking at the more recently
measured coupling attenuation curves the corner can be shifted without problem to 1GHz,
but that might not yet be sufficient.

Suggested Remedy
Replace:
750 MHz --> 1000 MHz
70 dB for f<1000 MHz
70-20*log(f/1000) for 1000<f<Fmax MHz

Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.

TFTD. Participants are requested to review this proposal and determine if they agree with
this proposal.
Maximum specified frequency for coupling attenuation has been adapted to Fmax, which make perfect sense for a single-speed transceiver. For multi-speed transceivers, it might not be desirable to mandate the need for frequency-scaling anti-aliasing filters in the design. In order to circumvent that and not overspecify channels generally, a good solution could be to require that the link segment shall meet the requirements of the highest supported rate at that port.

Suggested Remedy

Insert after line 42:

For multi-speed transceivers the link segment shall meet the coupling attenuation requirements for highest supported rate on the MDI.

PROPOSED REJECT.

IEEE802.3 does not specify implementation requirements.

PSANEXT and PSAFEXT need to be set. Levels based both on phy analysis and 10 dB margin from cabling measurements in mueller_3ch_05_0319.pdf are proposed. Models for PSANEXT and PSAFEXT are based on clause 113, the closest model for PSANEXT and PSAFEXT in IEEE Std 802.3, which go out to 2 GHz. Measurement limits of 75 dB loss are incorporated to allow for repeatable measurements PHY noise impacts are to be presented in sederat_3ch_01_0419.pdf, and zimmerman_3ch_02_0419 along with a spreadsheet for computations.

Suggested Remedy

Make equation 149-25 (PSANEXT) loss, and text below it (lines 10 & 11) with:

\[
\text{PSANEXT loss (f)} \geq \min (75, 80 - 15 \log_{10}(f/100)) \text{ dB, } 1 \leq f \leq F_{\text{Max}} \ (149-25)
\]

\text{where } f \text{ is the frequency in MHz.}

Replace equation 149-26 (PSAACRF loss), with "PSAACRF-F loss (f) \geq \min(75, 86-20\log_{10}(f/100)) \text{ dB, } 1 \leq f \leq F_{\text{Max}} \ (149-26)"

(text already has f is the frequency in MHz)

PROPOSED ACCEPT IN PRINCIPLE.

The test methodologies are specified in Annex 149A and Annex 97B."

Annex 149A relates to coupling attenuation, not to test setups for coupling between link segments.

Suggested Remedy

delete "Annex 149A and" on P161 L41

PROPOSED ACCEPT.
This subclause which is supposed to define PSANEXT stops short and is intertwined with the subclause for PSAACR-F. There are also references to the "type A" link segment of clause 97 which need to be removed, and there should be 2 figures, one for PSANEXT and one for PSAACR-F, where there is currently only one figure - referenced in the text as for PSANEXT, and entitled as for PSAACR-F.

(NOTE - THIS COMMENT DOES NOT ASSIGN THE VALUES FOR ALIEN CROSS TALK, BUT JUST FIXES THE EDITORIAL ISSUES)

Suggested Remedy

Move P162 lines 1 through 12 to be after "PSANEXT is illustrated in Figure 149-45." (P 162 line 26), changing the reference to "NEXT" currently on lines 3 and 7 (equation 149-25) to "ACR-F".

Change title of Figure 149-45 from "PSAACR-F calculated using Equation (149-26)" to "PSANEXT loss calculated using Equation 149-25"

At the end of the (new) PSAACR-F description, add "PSAACR-F is illustrated in Figure 149-46." and insert new figure "PSAACR-F loss loss calculated using Equation 149-26" (figure will be autonumbered)

Delete all references to "type A" (currently 2 occurrences on page 162)

Proposed Response

Proposed ACCEPT IN PRINCIPLE.

Implement the suggested remedy with Editorial license to implement with the correct format and style.

There is currently only one MDI return loss template for all speeds. I think we should differentiate requirements for different speeds to allow looser spec for 2.5Gbps and 5Gbps.

The easiest way to achieve this is by scaling all frequency values by S except for the 1MHz lower bound.

Suggested Remedy

Change:

- 10 --> $10S$
- 500 --> $500S$
- 3000 --> $3000S$
- 4000 --> F_{max}

Remove:

For 2.5BASE-T1, 5GBASE-T1, and 10GBASE-T1, the maximum applicable frequency for the MDI return loss is $4000 \times S$ MHz.

Proposed Response

Proposed REJECT.

Most PHYs don't scale the return loss template with speed. It's a function of the cable's insertion loss.

I would like to make explicit that the low-frequency roll-up is there to enable PoDL, and that without PoDL the RL extends at 20dB down to 1MHz.

Suggested Remedy

Split the low-frequency spec in two options:

- with PoDL: $20-20\log(f/10S)$ dB
- without PoDL: 20dB

Proposed Response

Proposed REJECT.

Need data to show this, not opinion. The commenter may choose to provide a presentation at a future meeting with data to support this and may choose to submit a comment at WG ballot.
The MDI return loss at high frequency is tighter than necessary IMO. The MDI is far-end return loss which gets twice attenuated by insertion loss. This return loss component therefore doesn't worsen the RL/IL ratio. I think the currently specified link segment return loss and MDI return loss are not well balanced for a cost optimal solution. I would like to propose to relax the MDI return loss and if possible tighten the link segment return loss.

Suggested Remedy

- Formula 12-10log(f/3000) change into 10-10*log(f/3000S) for 300S<f<3000S
- Formula 12-20*log(f/3000) change into 10-20*log(f/3000S) for 3000S<f<Fmax

PROPOSED REJECT.

Need data to show this, not opinion. The commenter may choose to provide a presentation at a future meeting with data to support this and may choose to submit a comment at WG ballot.

The MDI curve is discontinous at 500: 20dB versus 19.78dB.

Suggested Remedy

- Implicitly fixed by proposal to relax MDI return loss a bit. See next item.

PROPOSED REJECT.

It is not necessary for the limit line to be continuous.
The coefficient of Frequency which is "S" should be defined.

Suggested Remedy

The definition of "S" is the below.

\[
S = \begin{cases}
0.25 & \text{for 2.5GBASE-T1} \\
0.5 & \text{for 5GBASE-T1} \\
1 & \text{for 10GBASE-T1}
\end{cases}
\]

It is like the BROADCOM presentation below.

Title: Transmitter PSD Masks
Speaker: Kadir Dinc, Tom Souvignier
Date: November 2018

Proposed Response
Response Status: W

PROPOSED REJECT.

S is defined in 149.1.1.

The coefficient of Frequency which is "S" should be defined.

Suggested Remedy

Like the above

Proposed Response
Response Status: W

PROPOSED REJECT.

S is defined in 149.1.1.

The coefficient of Frequency which is "S" should be defined.

Suggested Remedy

Like the above

Proposed Response
Response Status: W

PROPOSED REJECT.

S is defined in 149.1.1.