This register should contain "the current SNR operating margin measured at the slicer input ... to an accuracy of 0.5 dB", yet there is no indication of what "SNR operating margin" means (is the PHY supposed to measure the noise of the signal? or infer it from FEC errors? or ...) nor is "the slicer input" defined. Trying to set an accuracy on something so vague is not appropriate. Anyway, providing that accuracy at the extremes of the range is probably difficult and unnecessary.

SuggestedRemedy
Delete "to an accuracy of 0.5 dB"

Response Response Status U
REJECT.

It's disappointing to see these very artificial test patterns from Clause 94 being brought back when we have moved on to better methods for PAM4 testing in Annex 120D and subsequent clauses such as 136.

SuggestedRemedy
Define jitter and linearity with PRBS13Q, following 120D.3.1.8 Output jitter and 120D.3.1.2 Transmitter linearity. Make JP03A and JP03B optional.

Response Response Status U
ACCEPT IN PRINCIPLE.

In the case of a bidirectional PHY with echo cancellation, the JP03A and JP03B signals are sufficient to check for even/odd jitter. The echo canceller has stricter requirements for other jitter found by the PRBS13Q sequence.

Comments 39, 40, 41, 117, 119, 120, 121, and 200 all change the text related to the transmitter linearity and jitter test modes.

Modify the text as defined in wienckowski_3ch_02e_0719.pdf.
An informative annex with state diagrams - that's crazy!

Suggested Remedy
- Remove the state diagrams or change the annex's status to normative (but optional, presumably)

Response

ACCEPT IN PRINCIPLE.

Add a new first subclause (149B.1) with all others renumbered after.

149B.1 Purpose

This annex describes a suggested assignment of the OAM status bits for use with the Clause 149 MultiGBASE-T1 PHYs. Suggested bit behaviors, shown in state diagrams, and bit assignments in the OAM frame are detailed in this annex for informative purposes to enable consistent use of the OAM channel. Use of these specific assignments and the behaviors described by the state diagrams is implementation dependent.