D2.2 Physical Layer Specifications and Management Parameters for 2.5 Gb/s, 5 Gb/s, and 10 Gb/s Auto

Comment Type T Comment Status X

Register bit 1.2309.15 is PMA/PMD reset. But this statement refers to 149.3.2.1, which is PCS reset.

Suggested Remedy
On page 35, line 44, change the reference from 149.3.2.1 to 149.4.2.1.

Proposed Response Response Status O

Comment Type T Comment Status X

The Precoder registers and text were modified in D2.2, but there is still a reference in D2.2 to register bits that were deleted.

Suggested Remedy
Delete: In normal operation, this value shall mirror the value in the MultiGBASE-T1 PMA control register bits 1.2309.10:9. P57 L17: Also, delete PICS MM227 as the "shall" has been removed.

Proposed Response Response Status O

Comment Type T Comment Status X

Table 45-155e defines the test mode control register bits. The test mode 3 transmit precoder setting is always controlled by register bits 1.2313.10:9. There is no need to define a "Local transmitter precoder override" bit.

Also change the name from "Local transmit precoder setting" to "Test mode transmit precoder setting" to clarify the purpose of these control register bits.

Suggested Remedy
1. In Table 45-155e, delete the row "1.2313.11".
2. In Table 45-155e, change the first column of the row "1.2313.12" from "1.2313.12" to "1.2313.12:11".
3. In Table 45-155e, change the Name of 1.2313.10:9 to "Test mode transmit precoder setting".
4. Delete 45.2.1.196.2.
5. Change page 41 line 39 to 45 to the following:
*45.2.1.196.3 Test mode transmit precoder setting (1.2313.10:9)
In Test mode 3, bits 1.2313.10:9 control the precoder setting of the local transmitter, as defined in 149.3.2.2.20. During normal operation, the precoder is set according to the value of PrecodeSel received from the link partner, and bits 1.2313.10:9 are ignored.*

Proposed Response Response Status O

Comment Type T Comment Status X

The transmit jitter tests are specified in both 149.5.2.3.1 and 149.5.2.3.2. Recommend to refer to both, or simply refer to 149.5.2.3.

Suggested Remedy
Option 1. Change "149.5.2.3.1" to "149.5.2.3.2".
Option 2. Change "See 149.5.2.3.1 for more information." to "See 149.5.2.3.1 and 149.5.2.3.2 for more information.*

Proposed Response Response Status O
Use "MultiGBASE-T1", instead of "MultiGBASE-T1 set". According to 149.1.1, "the nomenclature MultiGBASE-T1 is used to describe specifications that apply to the 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1 PHYs."

Suggested Remedy
1. Page 42, line 3:
 - Change from: "... at the slicer input for the PMAs in the MultiGBASE-T1 set."
 - To: "... at the slicer input for the MultiGBASE-T1 PMAs."

2. Page 62, Clause 78.5, line 18 to 25:
 - Change all occurrences of "... the PHY in the MultiGBASE-T1 set ...") to "... the MultiGBASE-T1 PHY ...".

Proposed Response

Comment Type

Suggested Remedy

- Change the first column of Table 45-155g from "1.2314.xx:yy" to "1.2315.xx:yy".

Proposed Response

Comment Type

Suggested Remedy

- Change line 49 to "*45.2.1.199.1 MultiGBASE-T1 user defined data (1.2316.15:0)".

Proposed Response

Comment Type

Suggested Remedy

- Add a note to this paragraph of the PoDL clause: The induced voltage ripple at the MDI of PoDL circuits beyond 10MHz shall be negligible to avoid degradation of signal reception.

Proposed Response
P802.3ch D2.2 Physical Layer Specifications and Management Parameters for 2.5 Gb/s, 5 Gb/s, and 10 Gb/s Auto

Comment Type T Comment Status X

Suggested Remedy

Response Status O

Comment Type E Comment Status X
typo

Suggested Remedy

change "RS-FE" to "RS-FEC"

Response Status O

Comment Type E Comment Status X
typograph

Suggested Remedy

change 'encoder' to 'encoders'

Response Status O

Comment Type E Comment Status X
typo

Suggested Remedy

change "RS-FE" to "RS-FEC"

Response Status O

Comment Type E Comment Status X
typograph

Suggested Remedy

change 'encoder' to 'encoders'

Response Status O
D2.2 Physical Layer Specifications and Management Parameters for 2.5 Gb/s, 5 Gb/s, and 10 Gb/s Auto

Comment Type T Comment Status X
Register bits 1.2309.10:9 do not exist. It should be 1.2313.10:9.

Suggested Remedy
Change from: "... by the value set in register 1.2309:10:9, ..."
To: "... by the value set in register 1.2313.10:9, ...".

Proposed Response Response Status O

Comment Type T Comment Status X

The linearity test of BASE-T1 PHYs have previously been based on transmission of a sequence in combination with a sinewave signal that is injected from the outside to account for the full-duplex communication on the link. In March it was argued that this method was not useful and there are better and simpler methods for specifying linearity that could be borrowed from other specs. This resulted into a method borrowed from a unidirectional SERDES spec, which happens to refer to multiple other clauses too. This method is arguably not simpler than the previously used method. But even more importantly this new method does not account for the full-duplex behavior. The received signal significantly extends the signal range on the MDI. When linearity is only measured when the TX is transmitting, but there is no signal received at the same time, such a test is not adequate IMO to address the problem.

Suggested Remedy
Suggest to use a similar linearity test method as used for 100BASE-T1 and 1000BASE-T1, that is, with an external sinewave superpositioned on top of the transmitted signal. This method ensures that linearity is tested over the appropriate output signal range that can occur for full duplex communication. Alternatively it can be considered if this test can be skipped, because the imposed linearity requirements of the transceiver to ensure reliable data transfer might be tighter than the currently included 'unidirectional SERDES-borrowed' test.

Proposed Response Response Status O

Comment Type E

In Figure 149-54 N=1 and N=0 are not aligned to the associated RL curves.

Suggested Remedy
In Figure 149-54 move N=1 and N=0 to be aligned to the associated RL curves.

Proposed Response Response Status O

Comment Type T

The coupling attenuation equation (149-24) references Fmax (line 36 & 41) as its maximum Frequency. Fmax is defined as 4000 x S, where S equals 1/4, 1/2, or 1 corresponding to 2.5Gbps, 5.0Gbps, or 10Gbps, respectively. However, Figure 149-45 on page 173 plots the coupling attenuation showing a maximum frequency of 5500MHz.

Suggested Remedy
Similar to the crosstalk limits in 149.7.2.1 & 149.7.2.2, I recommend replacing the 2 instances of Fmax with 4000MHz in the coupling attenuation equation.

Frequency limits of equation (149-24) would then be:

30 <= f <= 750 MHz
750 <= f <= 4000 MHz
where f is the frequency in MHz; 30 <= f <= 4000

Figure 149-45 should also be modified to show a max Frequency of 4000MHz instead of 5500MHz.

Proposed Response Response Status O