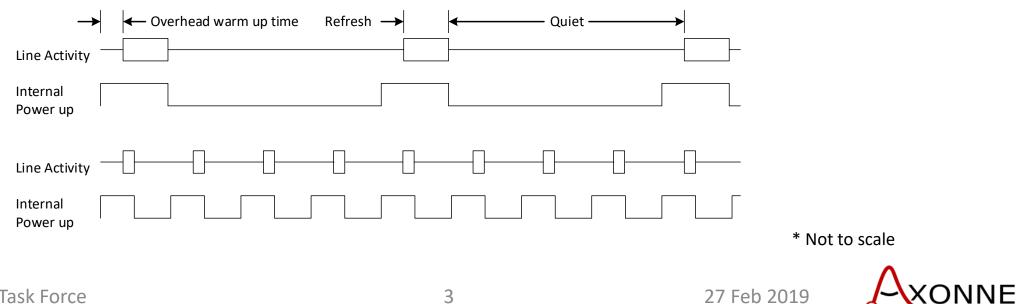
Proposed Asymmetric Low Power Modulation

William Lo February 27, 2019

27 Feb 2019

IEEE 802.3ch Task Force


Agenda

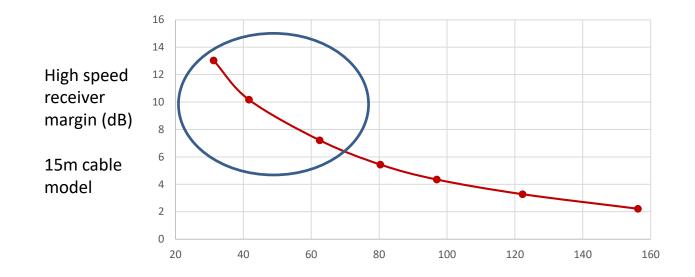
- Recap from previous ad-hoc
- Look at EEE power in real products using publicly available data
- Propose low speed modulation scheme
- Compare Energy Consumption

Recap: Higher Baud Rate, Less Efficient Power Savings

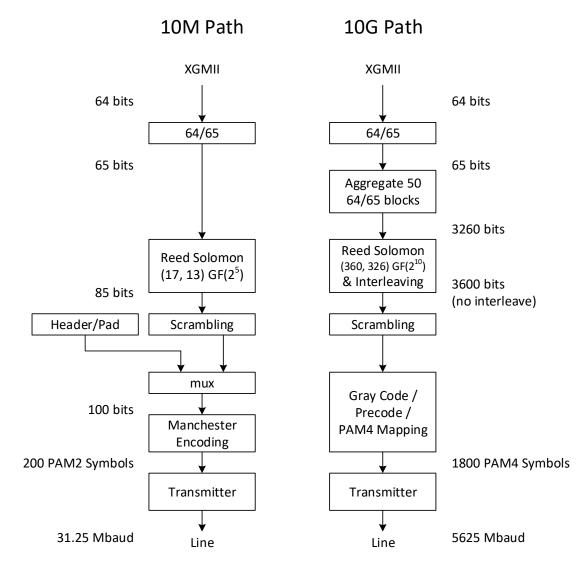
- Higher baud rate ullet
 - Refresh occurs closer together even though duty cycle remains the same
 - Overhead higher percentage of quiet/refresh cycle
 - Some circuits cannot shut down at all because of fast turn on time required
 - Decreased power saving vs theoretical

Published 1000BASE-T and 10GBASE-T (not T1) EEE numbers

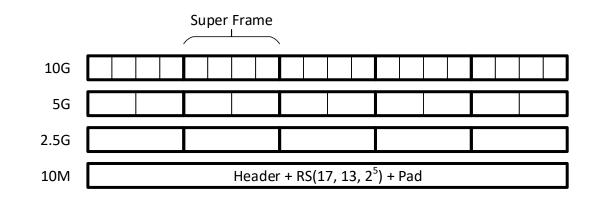
- Unfortunately not much actual EEE power numbers are available without NDA
- 10G nowhere near 95% savings


	Marvell	Broadcom	Broadcom
	88E1680M	5720	57810S
	(note 3)	(note 2)	(note 2)
	1000BASE-T	1000BASE-T	10GBASE-T
		2 ports	2 ports
NIC idle without EEE		2.06	12.8
NIC idle with EEE		1.21	9.4
NIC EEE power savings		42%	27%
PHY idle power without EEE (note 1)		1.03	6.4
PHY idle power with EEE (note 1)		0.18	3.0
PHY EEE savings	Over 75%	83%	53%

- Note 1: PHY only number not published. Assume PHY is 50% of NIC power and 100% power savings is from PHY.
- Note 2: <u>https://docs.broadcom.com/docs-and-downloads/collateral/wp/2CSEEE_WP201-R.pdf</u>
- Note 3: <u>https://www.marvell.com/documents/knarnyjewzvogczbbkad/</u>

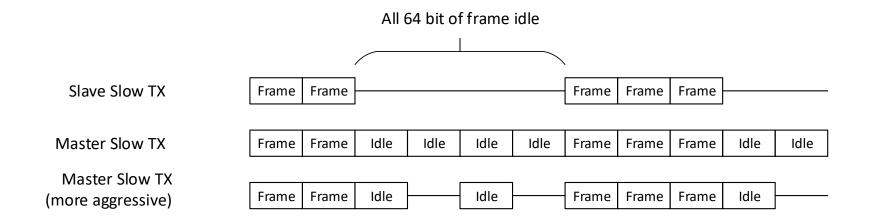

Recap: Alternative ways to save power

- Instead of reducing duty cycle (i.e. EEE bursting)
- Slow down clock frequency Run lower baud rate
- Simplify signal processing Eliminate high speed echo with filtering, simple slow receiver
- Possible if low speed signal to below 70 Mbaud.



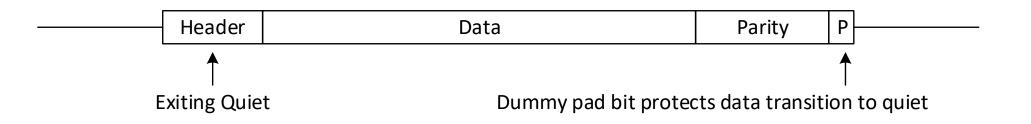
Proposed Low Speed Modulation 10M vs 10G

- Reuse 64/65 and scrambler
- Very small Reed Solomon
- Header acts as an alert signal
- Manchester good for clock extraction
- Integer number of super frames



27 Feb 2019

Power Savings Non-Transmission


- Slave transmits only if a RS frame contains non-idle data
- Master transmits continuously to supply clock information to link partner slave
- Alternative master be more aggressive in transmitting fewer idle frames

Frame Details

- 14 bit header Acts as alert that data is coming and indicates data type
- 65 bits data
- 20 bits parity protects at least 320ns and up to 640ns bursts
- 1 bit dummy pad protects parity bit when transitioning to quiet

Energy comparison –

Send 1600 byte burst of data every 1 second, otherwise idle

- EEE Method
 - 32552 refreshes/second x 1800 symbols/refresh + 43200 symbols for (alert, wake, data, sleep)
 - = 58.6M symbols/second with high performance receiver, high speed echo
- Asymmetric Method Slave Transmitter
 - 1600 x 8/64 frames x 200 symbols / frame
 - = 40K symbols/second with simple receiver, no high speed echo
- Asymmetric Method Master Transmitter (Continuous transmission)
 - 31.25M symbols/second with simple receiver, no high speed echo
- Asymmetric Method Master (50% idle transmission)
 - (31.25M 40K) x 50% + 40K
 - 15.645M symbols/second with simple receiver, no speed power echo

27 Feb 2019

Summary

- EEE power savings becomes more difficult at higher baud rate
- Slow and steady back channel will save more power
 - Reduced signal processing complexity
 - Fewer transmitted symbols
- Proposed modulation a good match for systems that
 - Transmits low amount of data
 - Does not need to quickly switch between slow and fast modes

THANK YOU

