Additional Text Changes for Comment \#84 and \#85

September 10, 2019
Mike Tu tum@broadcom.com

149.3.2.2.18 to 149.3.2.2.21

Motivation

- Multiple variables are used as indices of symbol numbers in 149.3.2.2.18 to 149.3.2.2.21
- 149.3.2.2.18: used " n " without definition
- 149.3.2.2.19: used " j " without definition
- 149.3.2.2.20: used "j" without definition
- 149.3.2.2.21: used "u" with definition
- Variable " n " also used in 149.3.4 and 149.3.5 as index of symbol numbers
- There are also redundant paragraphs in 149.3.2.2.19
- Recommend to clean up the texts and use " n " as the index of symbol numbers in 149.3.2.2.19, 149.3.2.2.20, and 149.3.2.2.21

[^0]
Suggested Remedy - 149.3.2.2.18

- Page 101, line 35-37. Make the following changes:
- "... and each pair of bits, $D_{n}[0]$ and $D_{n}[1]$, where n is an index indicating the symbol number, is scrambled using an additive scrambler. For each pair of interleaved bits, ..."
- Page 101, line 41-42:
- "... (MSB) to generate two scrambled data bits $\left\{A_{n}, B_{n}\right\}$ as shown in Equation (149-4)."
- Page 101, Equation 149-4:
$-\mathrm{A}_{\mathrm{n}}=\mathrm{DS}_{\mathrm{n}}[0] \oplus \mathrm{D}_{\mathrm{n}}[0]$
$-\mathrm{B}_{\mathrm{n}}=\mathrm{DS}_{\mathrm{n}}[1] \oplus \mathrm{D}_{\mathrm{n}}[1]$

Suggested Remedy - 149.3.2.2.19

- Page 101, delete line 49 to 51 (this paragraph is redundant)
- Page 101, line 52-54, change to:
- "For output symbols, the PCS transmit process shall map consecutive pairs of bits, $\left\{A_{n}, B_{n}\right\}$, where A_{n} is the bit arriving first and n is an index indicating the symbol number, to Gray-coded symbols $G(n)$ with one of four levels as follows:"
- Page 102, delete line 9 and 10 (this paragraph is redundant)
- Page 102, line 12 and 13:
- "For input symbols, the PCS receive process shall map Gray-coded symbols $\mathrm{G}(n)$ with one of four levels to pairs of bits $\left\{A_{n}, B_{n}\right\}$, where A_{n} is considered to be the first bit, as follows:"

Suggested Remedy - 149.3.2.2.20

- Page 102, line 38-39:
- "For each Gray-coded symbol $G(n)$, a precoded symbol $P(n)$ shall be determined by the following algorithm, where n is an index indicating the symbol number:"
- Page 102, line 41 to 47:
$-\mathrm{P}(n)=\mathrm{G}(n)$, when precoder_type = No precoder,
$-P(n)=(G(n)+P(n-1)) \bmod 4$, when precoder_type $=$ Precoder for $1-\mathrm{D}$ Channel,
$-P(n)=(G(n)-P(n-1)) \bmod 4$, when precoder_type $=$ Precoder for $1+D$ Channel, and
$-\mathrm{P}(n)=(\mathrm{G}(n)+\mathrm{P}(n-2)) \bmod 4$, when precoder_type $=$ Precoder for $1-\mathrm{D}^{2}$ Channel.

Suggested Remedy - 149.3.2.2.21

- Page 102, line 6-8:
- "The PAM4 encoded symbols are denoted $M(n)$, where n is an index indicating the symbol number."
- Page 102, line 10 to 11:
- "Each consecutive precoder output symbol, $\mathrm{P}(n)$, is mapped to one of four PAM4 levels and assigned to the PAM4 encoder output $\mathrm{M}(n)$."
- Page 102, line 13 :
- "Mapping from the precoder output symbol $\mathrm{P}(n)$ to a PAM4 encoded symbol $\mathrm{M}(n)$ is as follows:"

149.3.2.2.17

Regarding 149.3.2.2.17

- Page 99, line 40 to 45
- Variable " n " is the length of RS-FEC codeword
- Never referenced anywhere else as the length of RS-FEC.
- "n" also used in other places as index indicating the symbol number.
- Variable " k " is the number of data symbols per RS-FEC codeword - Never referenced anywhere else as \# data symbols.
- Variable " t " is number of correctable symbols per RS-FEC codeword
- Never referenced anywhere else as \# correctable symbols.
- "t" also used in 149.4.3.1 to represent time (continuous).
- Recommend to delete " n ", " k ", " t " from the paragraph.
- Modify page 99, line 40 to 45:
- The group of 3260 bits are encoded using a Reed-Solomon encoder operating over the Galois Field GF (2^{10}) where the symbol size is 10 bits. The encoder processes $k=326$ ten-bit RS-FEC message symbols to generate $2 t=34$ ten-bit RS-FEC parity symbols, which are then appended to the message to produce a codeword of $n=k+2 t=360$ ten-bit RS-FEC symbols. For the purposes of this clause, the particular Reed-Solomon code is denoted RS-FEG (n, k), and the particular ReedSolomon code is-as RS-FEC $(360,326)$.

THANK YOU

[^0]: 3 | IEEE 802.3ch Task Force - September 2019

