OAM in Frames

Denton Gentry
Dominet Systems
Overview of Presentation

1. Summary of proposal
2. Security and Authentication
3. SNMP
Summary of proposal

- Functionality in MAC Control layer
- OAM in Frames
 - Send statistics from clause 30
 - Link monitor sends one frame per second
 - Failure events also send stats
- Independent of PHY
 - Works with existing PHYs
 - No additional burden for future PHYs
- Base on Slow Protocol (Annex 43B)
 - Limit number of frames/sec (5 now, can increase if needed)
 - 802.1D compliant bridges do not propagate
Summary of proposal

- Simple encapsulation
 - 1 byte code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>TEST Request</td>
</tr>
<tr>
<td>01</td>
<td>TEST Response</td>
</tr>
<tr>
<td>02</td>
<td>Link Monitor</td>
</tr>
<tr>
<td>03</td>
<td>etc…</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DA</th>
<th>SA</th>
<th>Slow_Protocol</th>
<th>subtype</th>
<th>code</th>
<th>data</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Summary of proposal: Link Monitoring

• Send stats from Clause 30
 – Encoded as type,length,value
 – Type from Annex 30 arcs \(<\text{statType}, \text{statLen}, \text{statValue}>\)
 • Start with tuple after csmacdmgmt.
 – Define vendor extension mechanism
 • If we don’t, they’ll each choose a different mechanism
 • Distinguish via OUI?
 – Doesn’t extend to arbitrary MIB variables
 • SNMP MIBs depend on SNMP semantics

• Periodic announcement is the key mechanism
 – Could also allow queries for additional information
Summary of proposal: SNMP

• OAM intended as supplement to SNMP
 – Store stats from remote end
 – SNMP can query them later after failure
• Received stats stored in oRemoteEntity
 – New object class in Clause 30
 – Prepend source MAC address
 • Needed for shared networks

MACaddr1: <stat1><stat2><stat3>
MACaddr2: <stat1><stat2>
MACaddr3: <stat1><stat2><stat3>
Summary of proposal: No Master/Slave

- No inherent Master/Slave relationship
 - Link Monitor stats defined by a variable
 - Configure OLT not to send stats to CPE
 - Do not embed master/slave relationship into 802.3 spec
 - 802.3 covers more than one market space
Summary of proposal: Remote Loopback

Remote Loopback using TEST frames

- Send request, get response
- Non modal (mix TEST with regular traffic)

- Intended for connectivity test
 - Limited number of packets/sec.

- Not intended as throughput test
 - Best done at L3, where the services run

- Not intended as BERT test
 - Symbol & FEC error count is measure of link quality
 - High bit rate TEST = more expensive implementation
Summary of proposal: Remote Fault

• Most PHYs provide binary RFI indication
 – This is good.

• Access market may require more
 – Troubleshooting performed at CO
 – Subscriber has little expertise
 – Truck roll to subscriber is expensive

• If required, use OAM facility for this
 – Send OAM packets with information about fault
 – Alternative is complex error handling in PHY
Summary of proposal: Deployment model

- Demarc should be a bridge or L3 device
 - Has to transfer between dissimilar speed links
 - EFM <-> 10/100/1000 or 802.11, for example
- Can also work if demarc is within customer kit
 - Security dependant on implementation of device
Summary of proposal: What it isn’t

Note a few things not supported:

• No SETs
 – OAM does not modify configuration of remote
 – Ethernet links configure themselves locally

• Not a full-fledged management facility
 – OAM strives only to maintain link integrity
 • Even with an “unmanaged” device at one end
 – Managed devices must include a management protocol

• Not routable
 – Messages transit only a single link
 • Possible to design a forwarding proxy; out of 802.3 scope
 – Not intended to manage entire infrastructure
Overview of Presentation

2. Security and Authentication
Security & Authentication

• Security conscious environments
 – Require strong proof of identity
 – Do not allow unauthorized access
 – Do not reveal information to unauthorized parties

• OAM helps assure link functionality
 – If link no worky, authentication no worky
 – Need limited OAM before authentication
 • Allow full OAM functionality after authentication
 – No SETs
 • Security threat only of leaking information
Security & Authentication

- Mechanisms exist to authenticate a port
 - 802.1x

- Mechanisms exist to authenticate a node
 - DHCP w/ MD5 signature

- Mechanisms exist to authenticate users
 - PPPoE w/ RADIUS
 - login password (S/Key or otherwise)

- Mechanisms exist to authenticate mgmt packets
 - SNMPv3
 - IPsec w/ HMAC authentication

- The world does not need another mechanism
 - OAM should rely on existing facilities, not invent another one
Authentication proposal

- 802.3 should not define yet another mechanism
 - Include an attribute for authentication state
 - Enumerated Nonauthenticated, authenticated
 - Defaults to nonauthenticated
- Management agents can change state
 - ... after 802.1x authentication
 - ... after any user logs in via PPPoE
 - ... via a secure protocol like SNMPv3
 - ... etc
- 802.1x authentication would be straightforward
 - Out of 802.3 scope due to layering
Authentication proposal

- OAM Link Monitoring stats defined by attribute
- Include two attributes defining stats to send
 - Nonauthenticated and authenticated

<table>
<thead>
<tr>
<th>Nonauthenticated</th>
<th>Authenticated</th>
</tr>
</thead>
<tbody>
<tr>
<td>aFCSErrors</td>
<td>aFramesReceivedOK</td>
</tr>
<tr>
<td></td>
<td>aFramesTransmittedOK</td>
</tr>
<tr>
<td></td>
<td>aFCSErrors</td>
</tr>
</tbody>
</table>

- Allows minimal information before authentication
 - Maximal information after authentication
Authentication & Shared Networks

• What to do about shared networks
 – No way to know if every node on link has authenticated
 • Nodes are invisible until they transmit
 – Any node on the link could snoop OAM

• No simple solution to this problem
 – For example, 802.1x punts on shared networks
 – Would have to encrypt payloads, distribute keys

• Likely not an issue for PONs & access networks
 – Carrier will never send sensitive stats (authenticated or no)
 – Subscribers cannot see each other's traffic

• Recommend no heroic measures be taken
 – Shared networks are what they are
Security Threats: DoS

- Denial of Service: overwhelm far end with traffic
 - Attacker ignores the limit on packets/sec
 - Attacker is easy to find: OAM packets do not propagate

- OAM is stateless
 - Each packet processed independently
 - Packets can be dropped as necessary
 - Defense against DoS: drop excess packets

- Several implementation issues
 - don’t allow DoS on one MAC to affect other MACs
Overview of Presentation

3. SNMP
Supplementing SNMP

- OAM supplements SNMP
 - Upstream stores recent stats
 - Use SNMP to query stats from CO

- Question posed: why not just use SNMP?
 - CO would query stats from CPE1 and CPE2
 - Once per second
Why supplement SNMP

• Issue 1: Requires SNMP managers
 – SNMP agents answer queries, manager launch them
 – Managers not current practice in network gear

• Issue 2: SNMP is unicast
 – Must discover what nodes are out there
 – Unicasts will propagate through bridges

• Issue 3: SNMP is a MAC Client
 – Prioritization and Head of Line blocking
 – Cannot use for failure diagnosis

• Conclusion: OAM provides useful supplement
Summary

• Summarized proposal
 – OAM in MAC Control

• Security and authentication hook
 – Allow different behavior before and after authentication
 – Do not invent yet another authentication mechanism

• Supplementing SNMP