Precise Timing in a Residential Ethernet Environment

Michael Johas Teener - Broadcom
 mikejt@broadcom.com
Felix Feng - Samsung
 feng.fei@samsung.com
Eric Hyunsurk Ryu - Samsung
 eric_ryu@samsung.com
Agenda

• Introduction to Residential Ethernet
• Timing synchronization in ResE
• Differences between IEEE 1588 and ResE
• Using ResE as an IEEE 1588 subnet
Introduction to Residential Ethernet
What is Residential Ethernet?

- Simple enhancement to IEEE 802.1 bridges to support streaming QoS
 - 2 ms guaranteed latency through 7 bridges
 - Admission controls (reservations) for guaranteed bandwidth
 - Precise timing and synchronization services for timestamps and media coordination
 - May require extra timing service from 802.3 MAC

- Trade group to provide trademark “enforcement” of otherwise optional features
 - Require useful bridge performance, network management, PoE management, auto-configuration features
Why is it needed? (1)

• Common IT-oriented networks have inadequate QoS controls
• All use 802.1 "priorities" (actually, "traffic class")
 – Ethernet is the best
 • ... but it’s easy for the customer to misconfigure or overload
 • ... no guarantees
 – Wireless has inadequate bandwidth and excessive delays for whole-home coverage
 • ... 802.11n and UWB work for non-critical applications, or short range
 • ... no guarantees
 • ... and the backbone for the wireless attachment points is?
Why is it needed? (2)

- Proposed CE-based networks need new media or are expensive
 - MoCA requires coax everywhere, and is not cheap, and does not carry power, and has modest performance
 • ... but it’s part of the solution
 - Power line is not cheap, has modest performance, is susceptible to interference, and is blocked by protection circuits
 • ... but it’s part of the solution
 - 1394b/c long distance requires optical fiber or CAT-5, is not cheap
 • ... but even this is part of the solution
Where will Residential Ethernet be used?

• Backbone for home
 – Highest quality/lowest cost way to interconnect wireless A/Ps
 – “Perfect” QoS, requires the least customer interaction

• Within the entertainment cluster
 – Trivial wiring, no configuration, guaranteed 100/1G/2.5G per device, not just per room
 – PoE for speakers, extra storage (HD/optical), wireless A/Ps, other lower-power devices
 – Ideal long-term replacement for 1394

• Numerous non-“residential” applications
 – Professional audio/video studios
 – Industrial automation
 – Test and measurement
Proposed architecture

• Propose changes to both IEEE 802.3 (Ethernet) and IEEE 802.1Q (bridges/switches)

• Three basic additions to 802.3/802.1
 – Traffic shaping and prioritizing,
 – Admission controls, and
 – Precise synchronization
ResE QoS only available in ResE “cloud”

peer device not ResE capable

half duplex link can’t do ResE
Traffic Shaping and Priorities

• Endpoints of ResE network must “shape traffic”
 – Schedule transmissions of streaming data to prevent bunching, which causes overloading of network resources (mainly switch buffers)
 – Probably limit by “x bytes in 125usec” and “x bytes in 2ms” depending on traffic class

• Mapping between traffic class and priorities
Traffic Class?

- **802.1p introduced 8 different traffic classes**
 - Usually implemented as strict priorities
 - Highest (7 & 8) reserved for network management (low utilization)
 - Next two for streaming (5 & 6)
 - Lowest four for “best effort”

- **Proposal:**
 - Class 6 is for lowest latency streaming
 - Roughly 125usec per bridge hop: interactive audio/video
 - Class 5 is for moderate latency streaming
 - Perhaps 2ms per bridge hop: voice over IP, movies
Admission controls

• Streaming priority mechanism can reliably deliver data with a deterministic low latency and low jitter
 – but only if the network resources (bandwidth, in particular) are available along the entire path from the talker to the listener(s).

• For ResE it is the listener’s responsibility to guarantee the path is available and to reserve the resources.

• Done via a new 802.1ak “Multiple Registration Protocol” application: SRP (“Simple Registration Protocol”)
 – Registers streams as multicast address/bandwidth needed pairs
Precise synchronization

- ResE devices will periodically exchange timing information
 - both devices synchronize their time-of-day clock very precisely.
- This precise synchronization has two purposes:
 - to enable streaming traffic shaping and
 - provide a common time base for sampling data streams at a source device and presenting those streams at the destination device with the same relative timing.
There is a single device within a ResE “cloud” that provides a master timing signal. All other devices synchronize their clocks with this master.
Master clock selection

- Selection of the master is largely arbitrary (all ResE devices will be master-capable), but can be overridden if the network is used in an environment that already has a “house clock”.
 - Professional A/V studios
 - Homes with provider 1588 service
Changes needed in existing products

• Endpoint device needs
 – Timer
 – Streaming traffic transmit FIFO(s)
 • (streaming receive use existing FIFO)
 – Best to have dedicated ports for streaming data
 • MPEG-TS, I²S, etc., like existing 1394 links

• Bridges
 – ResE MACs
 – Streaming routing/filtering
 • similar to asynch logic
 – Admission control firmware
 • similar to 802.1 multicast and VLAN management
 – Timing propagation
Timing Synchronization in ResE
House reference clock
Cascaded TOD synchronization

Physical topology constraints

Legend:
- **clock master**
- **clock slave**

Bridge [0]

Bridge [1]

Bridge [2]
Cascaded TOD synchronization

Wall-clock distribution model

Cascaded TOD synchronization

Cascaded adjacent-synchronization hierarchy

Adjacent-station synchronization

Timing snapshots

Station A
- Local
- Offset
 - Add
 - Global
 - aRx[n]
- Global
 - aTx[n]

Station B
- Local
- Offset
 - Add
 - Global
 - bRx[n]
- Global
 - bTx[n]
Adjacent-station synchronization

Snapshot value distribution
(information for stationB is time A sent previous snapshot, time A received B’s previous snapshot, and time B sent snapshot before that)

Transmit timings are always for previous snapshot because they are recorded when the snapshot was sent, and are not available while the packet is in the process of being sent
Adjacent-station synchronization
StationB offset adjustments

Station A

Station B

- $\text{rxDelta} = (bRx[n-1] - aTx[n-1])$
- $\text{txDelta} = (bTx[n-1] - aRx[n-1])$
- $\text{clockDelta} = (\text{rxDelta} - \text{txDelta}) / 2$
- $\text{cableDelay} = (\text{rxDelta} + \text{txDelta}) / 2$
- $\text{offsetB} = \text{offsetA} - \text{clockDelta}$
Adjacent station synchronization

Station A

local

add

offset

add

global

Station B

local

add

offset

global

1kHz/100Hz synch interval

1ms - 10ms

clockSync
Timing specifics...

• Could add to 802.3 PHY specs:
 (from IEEE 1588-2002, subclause D.1.1, page 127)

• But realistically, more likely to get “when first data symbol of frame is transmitted to or received from PHY”
 — Less precise ... but ResE has frequent clock updates
A PHY-based design model

- A PHY-based design
- Global local offset
- MAC
- Convert

GlobalTime

client

PHY

Harder to implement, since PHY design changes

aRx

aTx

rx

tx

FIFO

FIFO
A MAC-based design model

Notes:
- FIFOs add uncertainty, but PHY buffers are small (0-32 bits)
- Easier to implement, since no change to PHY

General Timing in a Residential Ethernet Environment

- globalTime
- client
- MAC
- PHY
- FIFOs
- aRX
- aTx
- rx
- tx
- convert
- global local offset

Easier to implement, since no change to PHY
Differences Between ResE and 1588
Differences: No Options

• ResE must have “consumer-friendly” cost structure
 – 5 port 100baseT switches sell for US$30
 – Needs to use low cost time reference (standard crystal, much less than US$1)

• No IT manager in the home
 – Must be really self-configuring
 – Use UPnP or similar management
Differences: Two-way Only

• Scaling and cost structure dictate requiring just one method
• Two-way only for all purposes is simplest
• OK because only 100baseT and better will be used
 – And small packets (everything will fit in Ethernet-minimum 64 bytes)
 – And frequent updates (1ms - 10ms)
Differences: Direct Layer 2
Point-to-point

- ResE runs only on full duplex links
- No intermediate devices between participating nodes
 - No hubs, no non-participating switches, no routers
- Frame transport delay is tightly bound
 - Media and PHY coding/decoding are only uncertainties
Differences: Single Method for Clock Cascading

• All ResE switches are similar to boundary clocks
• Only a single method to be used for synchronizing master/slave clocks within switch
 — Garner/Hollander presentation will outline proposed methods and performance analysis
Using ResE as an IEEE 1588 Subnet
IEEE 1588 Multiple Subnet Topology

Repeater or Switch

Internal IEEE 1588 clocks synchronized to each other

Boundary clock

Router or Switch

GPS

Grand Master Clock

Typical Slave Clock

Repeater or Switch

Only Slave Port of Boundary Clock

Typical Master Port of Boundary Clock

= IEEE1588 code & hardware

= conventional network element

= conventional network element
Using ResE as a Subnet

- **Repeater or Switch**
 - Master Port with ResE Grand Master function

- **ResE Switch**
 - ResE dev with 1588 Slave Port function

- **Boundary Clock**

- **Router or Switch**

- **GPS**

- **Grand Master Clock**

- **Typical Slave Clock**

- **Only Slave Port of Boundary Clock**

- **Typical Master Port of Boundary Clock**

- **IEEE1588 code & hardware**
- **ResE/1588 bridge port**
- **conventional network element**
Using ResE as a Boundary Clock

ResE clocks are always synchronized to each other.

- ResE/1588 bridge port
- IEEE1588 code & hardware
- Conventional network element

Grand Master Clock

Typical Slave Clock

Only Slave Port of ResE cloud

Typical Master Port of ResE cloud

Repeater or Switch

resE switch

GPS

= Conventional network element
Conclusions

• Residential Ethernet represents another building block in timing-aware systems
• ResE can be used as an element in a 1588 architecture
 — Providing the performance is adequate
 — Can provide either boundary clock or subnet functionality