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7. Clock synchronization

7.1 Clock-synchronization overview

7.1.1 Clock synchronization services

Clock synchronization involves the transmission and reception of clockSync frames interchanged between
adjacent-span stations, using the state machines defined within this clause. When considered as a whole,
these provide the following services:

a) Election. The grand clock master is elected from among the grand-clock-master capable stations.

b) Isolation. Timeouts identify the boundaries, beyond which RE services are not supported.

c) Clock-sync. Clock-slave stations are synchronized to the grand master station’s time reference.

7.1.2 Grand-master precedence

Grand-master precedence is based on the concatenation of multiple fields, as illustrated in Figure 7.1. The
portTag value is used within bridges, but is not transmitted between stations.

Figure 7.1—Grand-master precedence
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7.1.3 Clock-synchronization agents

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 7.2a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 7.2b.

7.1.4 Clock-synchronized pairs

Each bridge port provides clock-master and clock-slave agents, although both are never simultaneously
active. External communications (see 7.2b) synchronize clock-slaves to clock-masters, as listed in Table 7.1.  

Figure 7.2—Hierarchical flows

Table 7.1—External clock-synchronization pairs
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Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. However, bridge-internal port-to-port
synchronization protocols are implementation-dependent and beyond the scope of this working paper.

Within a clock-slave, precise time synchronization involves adjustments of timer offset and rate values. The
adjustments of the timer’s offset is called offset synchronization (see 7.1.6); the adjustments of the timer’s
rate is called rate synchronization (see 7.1.8). Both involve calibration of local clock-master/clock-slave dif-
ferences and the propagation of cumulative differences in the clock-slave direction, as described by the C
code of Annex J.

Time synchronization yields distributed but closely-matched timeOfDay values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied timeOfDay values

7.1.5 Clock-synchronization intervals

Clock synchronization involves the processing of periodic events. Three distinct time periods are involved,
as listed in Table 7.2. The clock-period events trigger the update of free-running timer values; the period
affects the timer-synchronization accuracy and is therefore constrained to be small. 

The send-period events trigger the interchange of clockSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals. 

Table 7.2—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Time between timer-register value updates

send-period 10 ms Time between sending of periodic clockSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences
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7.1.6 Offset synchronization

Offset synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.5. Each clock consists of a progressing timeOfDay value, whose offset and
rate are periodically adjusted. The free-running flexTimer timer is never reset; synchronization of stationE
(with respect to stationD) is accomplished by adjustments to the flexOffset and flexRate values within
stationE.

The offset-synchronization protocols interchange parameters periodically, possibly every 10 ms. The
lastFlexTime, deltaTime, and offsetTime values are sent periodically from the clock-master to the
clock-slave. The lastFlexTime is sent periodically from the clock-slave to the clock-master, providing
information necessary for the clock-master to produce a deltaTime value for the clock-slave.

The offset-compensation protocols for stationE adjust its myOffset value so that the instantaneous values of
stationE.timeOfDay and stationD.timerOfDay are the same. Computations are performed on clockStrobe
reception and clockStrobe transmission.

As an option, an additional linkOffset value is available to manually compensate for mismatched
transmit-link/receive-link duplex-cable delays on the clock-master side. The linkOffset value is expected be
manually set when the cable mismatch is known through other mechanisms, such as specialized cable-char-
acterization equipment.

The station’s offsetTime value is constructed by adding the received clockStrobe.offsetTime, local myOffset,
and local linkOffset values. This revised clockStrobe.offsetTime value is used within each station and is
passed to the downstream neighbor (when such a neighbor is present).

Figure 7.3—Offset synchronization
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7.1.7 Cascaded offsets

The concept of cascaded offset values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.4. The slave-agent in bridgeB is synchronized to its neighbor grand-master via
clockSync frames sent on the connecting bidirectional span. Within bridgeB, the clock-slave agent passes
the time directly to the clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor
clock-master via clockSync frames sent on the connecting bidirectional span. Other ports are similarly syn-
chronized, thus synchronizing the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the seconds portion of the flexTimer value within each station or
bridge. These values may differ dramatically, based (perhaps) on the power-cycling or topology formation
sequence. Thus, the grand-master could have a flexTimer value of 100 while its bridgeB neighbor has a
flexTimer value of 500.

The myOffset value within bridgeB will converges to the value of −400, representing the differences
between grand-master and bridgeB flexTimer values. The flexOffset value received from the grand-master is
added to this myOffset value, so that bridgeB’s flexOffset becomes −390. The flexTimer and flexOffset values
are added, to yield a resultant bridgeB timeOfDay value of 110, properly synchronized to the identical
grand-master’s value.

Similarly, bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

flexTimer 100 500 -300 200 400

myOffset 10 -400 800 -500 -200

flexOffset 10 -390 410 -90 -290

timeOfDay 110

Representing:
myOffset[k+1] = flexTimer[k]−flexTimer[k+1];
flexOffset[k+1] = flexOffset[k]+myOffset[k+1];
timeOfDay[k] = flexTimer[k] + flexOffset[k];

Figure 7.4—Cascaded offsets (a possible scenario)
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7.1.8 Rate synchronization

Rate synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.5. The free-running baseTimer timer facilitate the determination of rate
differences between the clock-master and clock-slave stations.

The rate-synchronization protocols interchange parameters periodically, but less frequently than the
offset-synchronization protocols, possibly every 100 ms. The lastBaseTime value is sent periodically from
the clock-master to the clock-slave. Nothing is returned from the clock-slave station.

The rate-compensation protocols for stationE adjust its myDiffRate value to accommodate for differences
between the stationD.baseTimer and stationE.baseTimer rates. Computations are performed on clockStrobe
reception and clockStrobe transmission.

The station’s diffRate value is constructed by adding the received clockStrobe.diffRate and local myDiffRate
values. This revised clockStrobe.diffRate value is used within each station and is passed to the clock-slave
side neighboring station (if present).

Figure 7.5—Rate synchronization
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7.1.9 Cascaded rate differences

The concept of cascaded rate values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.6. Within this figure, the myDiffRateN and diffRateN represent parts-per-million
(PPM) normalized values of myDiffRate and diffRate respectively. 

The slave-agent in bridgeB is synchronized to its neighbor grand-master via clockSync frames sent on the
connecting bidirectional span. Within bridgeB, the clock-slave agent passes the time directly to the
clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor clock-master via clockSync
frames sent on the connecting bidirectional span. Other ports are similarly synchronized, thus synchronizing
the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the parts-per-million (PPM) normalized rate values within each
station or bridge. These values may differ significant, based (perhaps) on the nominal value or ambient tem-
perature. Thus, the grand-master could have a crystal deviation of +10 while its bridgeB neighbor has a
crystal deviation of +100.

The myDiffRate value within bridgeB will converges to the value of −90 PPM, representing the differences
between grand-master and bridgeB crystal accuracies. The diffRate value received from the grand-master is
added to the myDiffRate value, so that bridgeB’s diffRate becomes −90 PPM. The diffRate and crystal devia-
tion values are additive, yielding a resultant bridgeB flexTimer deviation of 10 PPM, properly synchronized
to the identical grand-master’s value.

Similarly, the rate of bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to
bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

crystal deviation +10 PPM +100 PPM −100 PPM −75 PPM +75 PPM

myDiffRateN 0 PPM −90 PPM 200 PPM −25 PPM −150 PPM

diffRateN 0 PPM −90 PPM 110 PPM +85 PPM −65 PPM

flexTimer
deviation

10 PPM

Representing:
myDiffRateN[k+1] = flexRate[k]−flexRate[k+1];
diffRate[k+1] = diffRate[k]+myDiffRate[k+1];
flexTimerDeviation[k] = crystalDeviation[k] + diffRate[k];

Figure 7.6—Cascaded rate differences (a possible scenario)
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7.1.10 Rate-difference effects

If the absence of rate adjustments, significant timeOfDay errors can accumulate between send-period
updates, as illustrated on the left side of Figure 7.7. The 2 ms deviation is due to the cumulative effect of
clock drift, over the 10 ms send-period interval, assuming clock-master and clock-slave crystal deviations of
−100 PPM and +100 PPM respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave trans-
missions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys or
filtering such irregular functions are thought unlikely to yield similar timeOfDay deviation reductions.

The differences in rates could easily be reduced to less than 1 PPM, assuming a 200 ms measurement inter-
val (based on a 100 ms slow-period interval) and a 100 ns arrival/departure sampling error. A clock-rate
adjustment at time 100 ms could thus reduce the clock-drift related errors to less than 5 ns. At this point, the
timer-offset measurement errors (not clock-drift induced errors) dominate the clock-synchronization error
contributions.

Figure 7.7—Rate-adjustment effects
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7.1.11 flexTimer implementation example

The selection of the best time-of-day format is oftentimes complicated by the desire to equate the clock for-
mat granularity with the granularity of the implementation’s ‘natural’ clock frequency. Unfortunately, the
‘natural’ frequency within a multimodal {1394, 802-100Mb/s, 802.3 1Gb/s} implementation is uncertain,
and may vary based on vendors and/or implementation technologies.

The difficulties of selecting a ‘natural’ clock-frequency can be avoided by realizing that any clock with suf-
ficiently fine resolution is acceptable. Flexibility involves using the most-convenient clock-tick value, but
adjusting the timer advance rate associated with each clock-tick occurrence.

The same mechanism easily supports both near-arbitrary clocking rates and fine-grained rate-adjustments,
needed to support timer-synchronization protocols, as illustrated in Figure 7.8. Within this figure, the shaded
bytes represent values that can safely be hardwired to zero with insignificant loss of accuracy.

This illustration is not intended to constrain implementations, but to illustrate how the system’s clock and
timer formats can be optimized independently. This allows the timeOfDay timer format to be based on
arithmetic convenience, timing precision, and years-before-overflow characteristics (see Annex E).

Figure 7.8—flexTimer implementation example
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7.1.12 An alternative baseTimer implementation

An alternative implementation could implement the baseTimer-related circuitry in hardware. For such
implementations, the associated firmware can be simplified, since the multiplies are eliminated from the
most frequently executed loop (see Annex J).

A possible baseTimer hardware implementation is much simpler than the fully adjustable timer implementa-
tion, due to the absence of offset-compensation, rate-compensation, and seconds-accumulation hardware, as
illustrated in Figure 7.9. Within this figure, the shaded bytes represent values that can safely be hardwired to
zero with insignificant loss of accuracy.

7.2 Terminology and variables

7.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

CYCLES
The number of isochronous cycles within each second; defined to be 8,000.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared queue structures.

Q_CRX_SYNC—The identifier associated with the received clockSync frames.
Q_CTX_SYNC—The identifier associated with the transmitted clockSync frames.
Q_ARX_REQ*—The identifier associated with the received subscription request frames.
Q_ATX_REQ*—The identifier associated with the transmitted subscription request frames.
Q_ATX_RES*—The identifier associated with the transmitted ResponseError frames.
Q_ARX_STR*—The identifier associated with the talker agent’s streaming input.
Q_ATX_STR*—The identifier associated with the talker agent’s streaming output.

NOTE—Those queue identifiers with an ‘*’ are used in other clauses, but are described above. This allows all queue
identification values in one location, rather than interleaving their definitions throughout this working paper.

Figure 7.9—baseTimer implementation example
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7.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime
A value representing the current time.

7.2.3 Common state machine routines

ClockSyncArrived(stationInfoPtr, portInfoPtr)
Snapshots the clockSync frame arrival time, on specified station and port (see Annex J).

ClockSyncDeparted(stationInfoPtr, portInfoPtr)
Snapshots the clockSync frame departure time, on specified station and port (see Annex J).

ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr)
Forms a clockSync frame for transmission (see Annex J).

ClockSyncReceive(stationInfoPtr, portInfoPtr, clockSyncPtr, rateAdjust)
Processes a clockSync frame after reception (see Annex J).

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue, frame)
Places the frame at the tail of the specified queue.

Min(value1, value2)
Returns the numerically smaller of two values.

QueueEmpty(queue)
Indicates when the queue has emptied.

TRUE—The queue has emptied.
FALSE—(Otherwise.)

TimerTick(stationInfoPtr)
Updates flexTimer (and baseTimer) entities on each clock tick (see Annex J).

7.2.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause TBD:

TBDs

7.3 Clock synchronization state machines

7.3.1 ClockCore state machine

7.3.1.1 ClockCore state machine definitions

The following state machine inputs are used multiple times within this clause:

None.

7.3.1.2 ClockCore state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.
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clockPeriod
The duration of a synchronized timer update interval.

clockPeriod < 20 ns
currentTime

See 7.2.2.
clockDeviation

The deviation from nominal frequency of the station-local crystal-stabilized clock.
msCount

A count that is incremented at the end of each 1 millisecond interval.
msTime

The start time of the current 1 millisecond timing interval.
nominalFrequency

The nominal frequency of the station-local crystal-stabilized clock.
tickTime

A time snapshot taken at the start of each clockPeriod interval.

7.3.1.3 ClockCore state machine routines

TimerTick(stationInfoPtr)
See 7.2.3.

7.3.1.4 ClockCore state table

The ClockAgent state machine calls other C-code routines, as specified in Table 7.3. A purpose of the
ClockAgent state machine is to ensure correctness of the other routines, by ensuring their indivisible
executions. The notation used in the state table is described in 3.4.

Row START-1: Compute the clockPeriod, based on the nominal frequency and deviation.

Row FIRST-1: Update the flexTimer and baseTimer once every clockPeriod interval.
Row FIRST-2: Update the millisecond counter once every millisecond.
Row FIRST-3: Otherwise, no operations are performed.

Table 7.3—ClockCore state table

Current

R
ow

Next

state condition action state

START — 1 clockPeriod =
1.0 / (nominalFrequency *
(1.0 + (deviation / 1000000.)))

START

FIRST (currentTime − tickTime) >= clockPeriod 1 TimerTick(siPtr);
tickTime = currentTime;

FIRST

(currentTime − msTime) >= .001 2 msTime = currentTime;
msCount += 1;

— 3 —
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7.3.2 ClockPort state machine

7.3.2.1 ClockPort state machine definitions

The following state machine inputs are used multiple times within this clause.

None.

7.3.2.2 ClockPort state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

frame
The contents of a clockSync frame.

lastInterval
A saved value of rateInterval, when the last rate-interval update was scheduled to occur.

rateInterval
A counter that increments on transitions of 100 ms rate-update intervals.

rateCount
A milliseconds-snapshot taken during the clockSync receive processing.
The rateCount value paces the relatively infrequent rate-update computations.

rxClockLast
The previously observed value of rxClockSync, used to detect changes in this toggling value.

rxClockSync
An indication whose value is toggled on the PHY-sensed arrival of each clockSync frame.
This value is toggled before a frame can be dequeued from the Q_CRX_SYNC queue.

rxCount
A milliseconds-snapshot taken during clockSync receive processing.
The rxCount value paces the detection of clockSync-silence timeouts.

sendCount
A milliseconds-snapshot taken during the clockSync transmission processing.
The sendCount value paces the normal clockSync frame transmissions.

selectCount
A value that tracks siPtr−>selectCount, to facilitate detection of station-precedence changes.

sinkCount
A milliseconds-snapshot taken during the clockSync reception and timeout processing.
The sinkCount value paces the infrequent clockSync-reception timeout processing.

txClockSync
An indication whose value is toggled on the PHY-sensed departure of each clockSync frame.
This value is toggled shortly after a frame has departed from the Q_CTX_SYNC queue.

txClockLast
The previously observed value of txClockSync, used to detect changes in this toggling value.

7.3.2.3 ClockPort state machine routines

ClockSyncArrived(stationInfoPtr, portInfoPtr)
ClockSyncDeparted(stationInfoPtr, portInfoPtr)
ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr)
ClockSyncReceive(stationInfoPtr, portInfoPtr, clockSyncPtr, rateAdjust)
ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr)

See 7.2.3.
Dequeue(queue)
Enqueue(queue, frame)

See 7.2.3.
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7.3.2.4 ClockPort state table

The ClockPort state machine calls other C-code routines, as specified in Table 7.4. A purpose of the
ClockPort state machine is to ensure correctness of the other routines, by ensuring their timely and
indivisible executions. The notation used in the state table is described in 3.4.

Row START-1: When a clock-sync frame arrives, mark its arrival time and process.
Row START-2: Process the PHY-generated signal to determine when the clockSync frame arrived.
Row START-3: Process the PHY-generated signal to determine when the clockSync frame departed.
Row START-4: Transmit quickly when the grand-master selection is changing.
Row START-5: Transmit routinely when the grand-master selection has stabilized.
Row START-6: Trigger the rate adjustments on approximate 100 ms intervals.
Row START-7: A port timeout occurs in the continued absence of clockSync frame arrivals.
Row START-8: Otherwise, wait for the next event to occur.

Row NEAR-1: Restart the rate interval condition after the last rate-measurement completion.
Row NEAR-2: Otherwise, process the received clockSync frame without rate-interval measurements.

Row FINAL-1: Restart the receive-timeout counter after processing each clockSync frame.

Table 7.4—ClockPort state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_CRX_SYNC))
!= NULL

1 rxCount = sendCount; NEAR

rxClockSync != rxClockLast 2 ClockSyncArrived(siPtr, piPtr);
rxClockLast = rxClockSync

START

txClockSync != txClockLast 3 ClockSyncDeparted(siPtr, piPtr);
txClockLast = txClockSync

selectCount != siPtr−>selectCount
&& (msCount − sendCount) >= 1

4 selectCount = siPtr−>selectCount;
sendCount = siPtr−>msCount;
ClockSyncTransmit(siPtr, piPtr, &frame);
Enqueue(Q_CTX_SYNC, frame);(siPtr−>msCount − sendCount) >= 10 5

(siPtr−>msCount − rateCount) >= 100 6 rateInterval += 1;

(siPtr−>msCount − sinkCount) >= 50 7 ClockSyncReceive(siPtr, piPtr,NULL, 0);
sinkCount = siPtr−>msCount;

— 8 —

NEAR lastInterval != rateInterval 1 ClockSyncReceive(siPtr, piPtr, &frame, 1);
lastInterval = rateInterval;

FINAL

— 2 ClockSyncReceive(siPtr, piPtr, &frame, 0);

FINAL — 1 rxCount = sinkCount = siPtr−>msCount; START


