Implementation Study of Gigabit Copper Ethernet Receivers

Stephen Oh, Ph. D.
DSP Technology Group
National Semiconductor
Motivation

- Three Competing Proposals for Gigabit LAN modem
 - ✓ 25 QAM
 - ✓ 12 CAP
 - ✓ PAM (5 level)

- Question
 - ✓ Are these proposals implementable and/or cost effective with the current (or 2 years later) technology?
Five Criteria for 1000BASE-T

- Broad Market Potential
- Compatibility with IEEE 802.3
- Distinct Identity
- Technical Feasibility
 - Demonstrated feasibility
 - Proven Technology
 - Confidence in reliability
- Economic Feasibility
 - Cost factors known, reliable data
 - Reasonable cost for performance expected
 - Total installation costs
Scope of the study

- No transmitter
- Only receivers
 - ✔ Adaptive filters only
 - ✔ No matching filter
 - ✔ No frequency/phase recovery
 - ✔ No control/memory calculation
 - ✔ No Viterbi decoder
 - ✔ No timing recovery
- DFE/NEXT/EC use sign-shift operations
 - ✔ No multipliers
- FFE: multiplier needed
- Coeff. update requires only 1/4 hardware
- CAP/QAM complex
- PAM real operations

✔ Minimum Assessment
Assumptions (1)

- **FFE (Feed-forward Equalizer)**
 - Requires multiplier
 - 7x12 (CAP/QAM), 6x12 (PAM)
 - CAP uses T/3 FSE
 - CAP uses phase-splitting FFE (2x real taps)
 - QAM: complex operation
 - PAM: real operation
 - 12 bit coefficients

- **DFE/NEXT/EC**
 - Use symbols (+/-1, etc)
 - No need to use multiplier for efficient implementation (CAP)
 - 10 bit coefficients
 - QAM/PAM need 3x10 multiplier

<table>
<thead>
<tr>
<th>Accumulator size</th>
<th>DFE</th>
<th>FFE</th>
<th>NEXT</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAM/CAP</td>
<td>16</td>
<td>21</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>PAM</td>
<td>16</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>
Assumptions (2)

- Gate estimate for small cell
 - 7x12 multiplier: 800 gates
 - 6x12 multiplier: 650 gates
 - 3x10 multiplier: 330 gates
 - Signshift: 6 gates
 - Full adder: 10 gates
 - Flip-flop: 8 gates
- All gate estimates are “conservative”
- CAP @ 83.3 MHz
- PAM @ 125 MHz
- QAM @ 125 MHz

<table>
<thead>
<tr>
<th>Cell Calculation</th>
<th>7x12 mult</th>
<th>6x12 mult</th>
<th>signshift</th>
<th>FA</th>
<th>Flip-flop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800</td>
<td>700</td>
<td>4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16bit acc</td>
<td>20bit acc</td>
<td>21bit acc</td>
<td>22bit acc</td>
<td>3x10 mult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>Gate Estimate / TAP</td>
<td>CAP</td>
<td>PAM</td>
<td>QAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFE</td>
<td>328</td>
<td>618</td>
<td>618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFE</td>
<td>1178</td>
<td>1096</td>
<td>1178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEXT</td>
<td>328</td>
<td>708</td>
<td>690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>400</td>
<td>708</td>
<td>690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#TAPs</th>
<th>DFE</th>
<th>FFE</th>
<th>NEXT</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>8</td>
<td>24</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>PAM</td>
<td>10</td>
<td>20</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>QAM</td>
<td>6</td>
<td>9</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>
Formula

- **CAP/PAM/QAM**
 - ✅ 4 receivers
 - ✅ 25% overhead for updating

- **CAP**
 - ✅ 4 real taps for DFE/NEXT/EC
 - ✅ 2 real taps for FFE

- **QAM**
 - ✅ 2 real taps @ 2x speed
 - ✅ use 3x10 multiplier for 5 level

- **PAM**
 - ✅ 1 real tap for real operation
 - ✅ use 3x10 multipliers for 5 level

- **CAP**
 - $5 \times (4 \times \text{DFE} + 2 \times \text{FFE} + 12 \times \text{NEXT} + 4 \times \text{EC})$

- **QAM**
 - $20 \times (\text{DFE} + \text{FFE} + 3 \times \text{NEXT} + \text{EC})$

- **PAM**
 - $5 \times (\text{DFE} + \text{FFE} + 3 \times \text{NEXT} + \text{EC})$
Gate Estimates

<table>
<thead>
<tr>
<th>Number of TAPs</th>
<th>#TAPs</th>
<th>DFE</th>
<th>FFE</th>
<th>NEXT</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>8</td>
<td>24</td>
<td>12</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>PAM</td>
<td>10</td>
<td>20</td>
<td>80</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>QAM</td>
<td>6</td>
<td>9</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

CAP = 10 * (2 DFE + FFE + 6 NEXT + 2 EC)

PAM = 5 * (DFE + FFE + 3 NEXT + EC)

QAM = 20 * (DFE + FFE + 3 NEXT + EC)

<table>
<thead>
<tr>
<th>#gates</th>
<th># transistors</th>
<th>speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>1,083,360</td>
<td>4,333,440</td>
</tr>
<tr>
<td>PAM</td>
<td>1,414,900</td>
<td>5,659,600</td>
</tr>
<tr>
<td>QAM</td>
<td>2,149,200</td>
<td>8,596,800</td>
</tr>
<tr>
<td>QAM2</td>
<td>1,074,600</td>
<td>4,298,400</td>
</tr>
</tbody>
</table>

Example:

CAP = 10 *
(2 * 8 * 328
+ 24 * 1178
+ 6 * 12 * 328
+ 2 * 64 * 400)

(*) **QAM2**: 2*real tap, but running @ 2x speed
Analysis

- Total receiver = 1.3 * adaptive filters ("aggressive")
- Pentium CPU= 4 mil. transistors(*)
- All proposed systems are larger than the Intel’s Pentium (or Sun’s UltraSparc)
- PAM is larger and consumes more power than CAP/QAM
- Not cost effective
 - Modem chip will be as expensive as a Pentium class chip
 - Power consumption
 - Issue on Criteria 5

(*) from Texas Instruments
So, what’s next?

- A New Proposal
 - ✓ 1 Gb LAN uses 4 UTP
 - ✓ Dual-Duplex Transceiver over 4 pairs
 - • 2 x 500 Mbps transmitter / 2 pairs
 - • 2 x 500 Mbps receiver / 2 pairs
 - ✓ Two NEXT cancellers (not three) needed
 - ✓ No Echo canceller required

![Diagram of CAT5 UTP (4 pairs)](image-url)
Dual Duplex System

- **A New System**
 - ✓ 500 Mbps for each pair
 - ✓ Use 64 QAM/CAP
 - ✓ Baud rate = 83.3 MHz
 - ✓ Sampling frequency = 250 MHz

- **Key Issues**
 - ✓ Implementation complexity
 - ✓ Performance margin for BER = 10^{-10}
 - ✓ Data conversion precision
Implementation Complexity

- **Same Gate Calculation**
 - ✓ Filter uses 8x12 multiplier (950 gates) for FFE
 - ✓ Use 3x10 multiplier for DFE/NEXT
 - ✓ Tap numbers are same as QAM/CAP system
 - ✓ Two NEXT cancellers
 - ✓ No Echo Canceller

- **Complexity Comparison**
 - ✓ 32% of CAP
 - ✓ 24% of QAM
 - ✓ 18-25% of PAM

CAP = 10 * (2 DFE + FFE + 6 NEXT + 2 EC)
PAM = 5 * (DFE + FFE + 3 NEXT + EC)
QAM = 10 * (DFE + FFE + 3 NEXT + EC)
New/QAM = 5 * (DFE + FFE + 2 NEXT)
New/CAP = 5 * (2 DFE + FFE + 4 NEXT)

<table>
<thead>
<tr>
<th></th>
<th>#gates</th>
<th># transistors</th>
<th>speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>1,083,360</td>
<td>4,333,440</td>
<td>83.3 MHz</td>
</tr>
<tr>
<td>PAM</td>
<td>1,414,900</td>
<td>5,659,600</td>
<td>125 MHz</td>
</tr>
<tr>
<td>QAM</td>
<td>1,074,600</td>
<td>4,330,240</td>
<td>125 MHz</td>
</tr>
<tr>
<td>New/CAP</td>
<td>359,280</td>
<td>1,437,120</td>
<td>83.3 MHz</td>
</tr>
<tr>
<td>New/QAM</td>
<td>264,510</td>
<td>1,058,040</td>
<td>125 MHz</td>
</tr>
</tbody>
</table>
Other Key issues

- **Performance Margin**
 - ✔ Target BER = 10^{-10}
 - ✔ Required SNR = 29.4 dB
 - ✔ Question
 - Is there enough performance margin?
 - We might have just enough margin due to less NEXT interference and no echo.

- **Data Conversion Issue**
 - ✔ ADC
 - Should run at 250 MHz
 - Required Precision: 7/8 bits?
 - 7 bit ADC@250MHz seems OK
 - ✔ New proposal needs 2 ADC’s (not four)

- **Lucent’s Initial simulation study**
 - Positive margin
 - 7 bit ADC @ 250 MHz
 - no DFE

Ongoing study in progress!
Conclusion

- The Existing Proposals are not cost effective
 - ✔ Do NOT meet criteria 4 and 5
- The new proposal is only 30% of the existing proposals in terms of gate numbers
 - ✔ Meets criteria 5 better than the existing proposals
- 7/8 bit 250 Msps ADC feasibility issue
- On-going study on unresolved issues by simulation with real data (not simulated data)