IEEE 1394 Tutorial
Agenda

- 1394 History and Market
- Technical Summary of 1394
- 1394c: 1394/802.3 coexistence
- 1394/802.15.3 cooperation
- Future cooperation
IEEE 1394 History and Market Summary

Michael Johannes Teener
Chair P1394c WG
mike@teener.com
Agenda

• History

• Current market

• Developing markets
Prehistory: 1986-87

- IEEE Study Group started September 1986
 - Too many different serial busses …
 - IEEE Working Group approved December 1986
 - First paper, "Reducing the Tower of Babel", January 1987
- Basic design set by January 1987
 - Cable (10m) and backplane environments
 - 2 Mbaud/sec base rate, 8 Mbaud/sec optional high-speed rate
 - Bit-serial arbitration, 4B5B data encoding
 - Guaranteed latency
 - Read/write/lock transactions with 32-bit address space
 - Cost for silicon/connector/cable of < $15
- Draft 1.0, November 1987
System support begins: 1988-91

- Apple starts full scale development
 - Isochronous data a requirement for digital sound
 - Data rates of 12.288 and 49.152 Mbaud/sec, 4B5B optical interface
- IBM and Apple want a better SCSI
 - Data rates up to 49 Mbaud/sec, 196 MBaud/sec growth
 - Apple works on optical interface, invents LVDS instead
 - separate clock, drops 4B5B encoding
- Higher layers become robust
 - 64-bit addressing adopted
 - DMA control for disk drives
- Actual implementations!
 - Xilinx-based 12.288 Mbaud system
 - 49.152 Mbaud cable transceiver fabbed
Cross-platform: 1992

- Physical layer solidifies
 - hierarchical arbitration, full bit repeating at PHY
 - Apple designs 98.302 MBit/sec PHY
 - TI builds first test chips
 - Connector based on Nintendo Gameboy
- Return of encoding?
 - DC-Balanced code of 8B10B may be needed at 192 Mbit/sec
 - SGS-Thompson proposes Data-Strobe encoding, allows 393Mbit/sec using same cable/transceiver
- Higher layer improvements
 - simplified isochronous arbitration (no ordering)
 - SCSI-3 Serial Bus Protocol (SBP) effort starts
- Jerry Marazas of IBM takes over as chair
 - Thank you Jerry!
It works, it works! 1993

• TI delivers “draft 6” PHY
 ... and it works!
 – NCR (->ATT->Symbios->LSI) announces intention to build P1394 IC’s

• Comdex demos
 – IBM/Maxtor/Adaptec
 – Apple/IBM/Western Digital
 – Apple and TI win “Most Significant Technology” award

• Standardization finishes
 – Final connector wars over
 – Bus management closure
Becoming reality: 1994-1997

- IEEE 1394-1995
 - Official standard after two ballots
- First products
 - Sony DV camcorders in 1995, many others by 1997
 - Sony machine vision cameras
- PC OEMs show interest
 - 1394 “truth session” at fall 1995 Comdex
- Open HCI definition
 - Standard programming model for PC link interface
 - Wintel/Apple/Sun work together!
- New standards efforts
 - P1394b: gigabit/long distance
 - P1394.1: bridging
 - P1212r: reality check
Accelerating growth: 1998-2002

• Patent pool established
 – $0.25/end user system (regardless of the number of ports or internal nodes)

• PCs from Apple, Compaq, NEC, Sony with 1394 on the motherboard
 – Apple and Sony commit 100%
 • iMovie, the first killer application
 – Disk drives! Printers!

• Consumer electronics expands
 – DVB, EIA, FCC specify 1394 for standard digital video interface
 • First 1394 DTVs from Mitsubishi and Sony in US
 • DTV/STB/VCR/PVR in Japan
 – Audio products from Pioneer, Philips, Yamaha

• 1394b finished
 – 786 Mbit/sec PHYs from TI, “FireWire 800”
 • 5m STP cable, 100m GOF shipping
 – 98 Mbit/sec cat5, 100m networks from TI
 – 1573 Mbit/sec PHY specified

• IP 1394 implemented
 – Windows 98/XP, Mac OS 10.3
Latest developments

- p1394 revision
 - combine 1394/1394a/1394b plus errata and enhancements (perhaps 1394c)
 - 3146 Mbit/sec PHY definition
- p1394c
 - 796 Mbit/sec cat5 100m network using 1000baseT PHY technology
 - negotiation to allow either 802.3 or 1394 protocols
- 802.15.3 Protocol Adaption Layer
 - Allows any PAN that uses the 802.15.3 MAC to carry 1394 protocols transparently
Current market and projections

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>22.67</td>
<td>29.61</td>
<td>36.36</td>
<td>43.49</td>
<td>51.01</td>
<td>59.47</td>
</tr>
<tr>
<td>PC peripherals</td>
<td>3.84</td>
<td>4.41</td>
<td>5.31</td>
<td>6.06</td>
<td>6.85</td>
<td>5.94</td>
</tr>
<tr>
<td>CE</td>
<td>33.51</td>
<td>40.99</td>
<td>48.04</td>
<td>62.47</td>
<td>94.35</td>
<td>127.71</td>
</tr>
<tr>
<td>Automotive</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>0.10</td>
<td>0.40</td>
<td>0.75</td>
</tr>
<tr>
<td>Total</td>
<td>60.02</td>
<td>75.02</td>
<td>89.75</td>
<td>112.12</td>
<td>152.61</td>
<td>193.87</td>
</tr>
</tbody>
</table>

source: In-Stat-MDR report IN030582MI, May 2003
Market notes

• Other, smaller markets not included
 – Industrial vision/sensors/robots
 – Professional audio and video equipment
 – Aerospace

• Automotive numbers are probably too conservative

• PC peripherals are probably quite conservative unless “external PCI Express” becomes reality
Market trends

• Consumer audio and video gear are naturals for 1394 and greatest long term growth
 – DV, MPEG, uncompressed A/V uses continue to expand
 – Automotive is interesting subset
• PCs want to connect to CE gear, so 1394 will continue in consumer PCs and those used for content creation
• PC peripherals will continue to grow, but more modestly
 – Low overhead, adequate power sourcing, extra performance keeps market niche open w/r/t USB
Possibilities for the future

- Wireless shows signs of being unifying force for protocols
 - 802.15.3/WiMedia support for 1394 PAL as well as traditional IP networking
 - 802.11e work partially completed
 - same basic approach as for UWB

- Process should be continued for wired networks
 - Ethernet in some form could provide backbone for 1394 local clusters
 - but only if similar QOS is provided
 - hence, my interest in “residential Ethernet”
Thank you!