
The Removal/Demotion of MinNum and
MaxNum Operations from IEEE 754™-2018

David H.C. Chen

February 21, 2017

Acknowledgements
In writing this report, I received help from many colleagues. A thank you to all my

colleagues from Floating-Point Working Group for providing crucial insights and

expertise. I would also like to express special appreciation to Bob Alverson, Steve

Canon, Mike Cowlishaw, David Gay, Michel Hack, John Hauser, David Hough, William

Huffman, Grant Martin, Terje Mathisen, Jason Riedy, and Lee Winter, whose valuable

inputs, suggestions and comments have significantly improved this report. Any errors or

omissions are mine and should not reflect on my colleagues.

1 Introduction
IEEE Standard for Floating-Point Arithmetic 754™ 2008 version (IEEE std 754™-2008)

[6] specifies four minimum and maximum (min-max) operations: minNum, maxNum,

minNumMag, and maxNumMag, in sub-clause “5.3.1 General operations”. These four

min-max operations are removed from or demoted in IEEE std 754™-2018 [7], due to

their non-associativity. No existing implementations become non-conformant due to this

removal/demotion.

This report explains the technical reasons for the removal/demotion of the above four

min-max operations, and reviews existing min-max implementations in some

programming language standards and commercial hardware. Many implementations

support several floating-point formats, but this report will only present one or two

selected formats for an implementation when additional formats are supported in the

same way.

To be brief, this report focuses on treatments of Not a Number (NaN) by max operations.

A given implementation may also provide max magnitude, min, and min magnitude

operations treating signaling NaN (sNaN) and quiet NaN (qNaN) in the same way.

Please notice that the treatment of NaN by min-max operations does not represent the

way NaN is treated by other operations in the same implementation.

This report also suggests a possible future course for the development of 754™-2018 or

754™-2028 min-max operations, by outlining criteria for other min-max variants. This

report does not document the intent or application of min-max operations, and does not

argue for a particular min-max operation.

 2

2 Non-Associativity of 754™-2008 Min-Max Definitions
754™-2008 [6] is the first 754™ standard to define any min-max operations. In sub-clause

“5.3.1 General operations”, 754™-2008 [6] defines the following four min-max

operations:

minNum(x, y) is the canonicalized number x if x < y, y if y < x, the canonicalized number if one

operand is a number and the other a quiet NaN. Otherwise it is either x or y, canonicalized (this

means results might differ among implementations). When either x or y is a signaling NaN, then

the result is according to 6.2.

maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the canonicalized number if one

operand is a number and the other a quiet NaN. Otherwise it is either x or y, canonicalized (this

means results might differ among implementations). When either x or y is a signaling NaN, then

the result is according to 6.2.

minNumMag(x, y) is the canonicalized number x if | x| < | y|, y if | y| < | x|, otherwise minNum(x,

y).

maxNumMag(x, y) is the canonicalized number x if | x| > | y|, y if | y| > | x|, otherwise maxNum(x,

y).

In sub-clause “7.2 Invalid operation”, 754™-2008 [6] also requires the following:

For operations producing results in floating-point format, the default result

of an operation that signals the invalid operation exception shall be a quiet

NaN that should provide some diagnostic information (see 6.2).

Combining the above requirements from sub-clauses 5.3.1 and 7.2 results in the

following non-associative behavior affecting all four min-max operations:

minNum(1, minNum(1, sNaN)) -> minNum(1, qNaN) -> 1 (1)

minNum(minNum(1, 1), sNaN) -> minNum(1, sNaN) -> qNaN (2)

With this non-associativity, different compilations or runs on parallel processing can

return different answers, depending on whether the sNaN is encountered last or not in a

sequence of operations.

3 Language Standards and Commercial Hardware
Implementations

754™-2008 [6] and 754™-2018 [7] are really meta-standards for programming language

standards. The Floating-Point Working Group reviewed the following implementations

of language standards and commercial hardware before the removal/demotion of the min-

max operations. An underlying issue identified was that sometimes a NaN is the most

interesting part of a vector; sometimes the least.

Different language and hardware implementations treat NaN differently. Some of these

implementations treat sNaN and qNaN in the same way, while others have different

treatments depending on whether the NaN is signaling or quiet. Some implement two

sets of min-max operations with different behaviors.

 3

An implement may offer min-max in scalar only, scalar and vector, or scalar, vector and

vector reduction forms. The following table lists implementations with their scalar min-

max behaviors for quick comparison.

TABLE I. SCALAR MIN-MAX BEHAVIOR COMPARISON

Implementations sNaN treatment qNaN treatment Comments

C11 fmin / fmax (1, sNaN) ->

undefined

(1, qNaN) -> 1 qNaN as

“missing data”

TS18661-1 fmin / fmax (1, sNaN) -> qNaN (1, qNaN) -> 1 qNaN as

“missing data”

sNaN

“propagate”

Java™ Platform SE 8 Strictmath min /

max

(1, sNaN) -> qNaN (1, qNaN) -> qNaN NaN

“propagate”

Java™ Platform SE 8 Math min / max (1, sNaN) -> qNaN (1, qNaN) -> qNaN NaN

“propagate”

ARM® ARMv8.2 FMINNM / FMAXNM (1, sNaN) -> qNaN

and signal Invalid

(1, qNaN) -> 1 qNaN as

“missing data”

sNaN

“propagate”

Cadence® Tensilica® Fusion G3

XT_MINNUM_S / XT_MAXNUM_S

(1, sNaN) -> 1 and

signal Invalid

(1, qNaN) -> 1 NaN as

“missing data”

Decimal Arithmetic Specification version

1.70 min / max

(1, sNaN) -> qNaN

and signal Invalid

(1, qNaN) -> 1 qNaN as

“missing data”

sNaN

“propagate”

IBM® Power ISA™ Version 3.0 vminfp /

vmaxfp for binary32

(1, sNaN) -> qNaN

and signal Invalid

(1, qNaN) -> qNaN NaN

“propagate”

IBM® Power ISA™ Version 3.0 xsmindp
/ xsmaxdp for binary64

(1, sNaN) -> qNaN

and signal Invalid

(1, qNaN) -> 1 qNaN as

“missing data”

sNaN

“propagate”

Intel® AVX-512 VRAGESS (1, sNaN) -> qNaN

and signal Invalid

(1, qNaN) -> 1 qNaN as

“missing data”

sNaN

“propagate”

These implementations behave differently when an operand is a number and the other

operand is either sNaN or qNaN. For details and additional information, please look into

each section of this chapter.

3.1 C11: qNaN Are Missing Data

ISO/IEC 9899:2011 International Standard for Programming Languages – C (C11) [9]

defines min-max functions. C11 sub-clauses 7.12.12.2 and 7.12.12.3 describe fmax and

fmix functions, respectively:

The fmax functions determine the maximum numeric value of their arguments.242)

The fmin functions determine the minimum numeric value of their arguments.243)

242) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric,

then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of NaNs.

 4

C11 [9] Annex F.2.1 clarifies the NaN denotation of C11:

This specification does not define the behavior of signaling NaNs.359) It generally uses the term

NaN to denote quiet NaNs.

359) Since NaNs created by IEC 60559 operations are always quiet, quiet NaNs (along with

infinities) are sufficient for closure of the arithmetic.

The above descriptions specify the following behavior:

fmax (1, qNaN) -> 1 (3)

fmax (1, sNaN) -> undefined (4)

3.2 TS18661-1: sNaN Propagate but qNaN Are Missing Data

ISO/IEC TS18661-1 Technical Specification – Information technology – Programming

languages, their environments, and system software interfaces – Floating-point

extensions for C – Part 1: Binary floating-point arithmetic (TS18661-1) [10] binds C

operation fmin to ISO/IEC/IEEE 60559:2011 (IEEE 754™-2008) [6] operation minNum,

and fmax to maxNum. TS18661-1 [10] changes the footnotes 242) and 243) in the C

standard to exclude sNaN:

Change footnotes 242) and 243) from:

242) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric,

then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of NaNs.

to:

242) Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the

other numeric, then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs.

As a result, fmax will have the following new behavior:

fmax (1, qNaN) -> 1 (5)

fmax (1, sNaN) -> qNaN (6)

3.3 Java™ Platform SE 8: All NaN Propagate

According to Java™ Platform, Standard Edition 8, API Specification, both

java.lang.Strictmath [12] and java.lang.Math [11] provide min-max methods.

java.lang.Strictmath and java.lang.Math contains the identical method details:

public static float max(float a, float b)

 5

Returns the greater of two float values. That is, the result is the argument closer to positive

infinity. If the arguments have the same value, the result is that same value. If either value is NaN,

then the result is NaN. Unlike the numerical comparison operators, this method considers negative

zero to be strictly smaller than positive zero. If one argument is positive zero and the other

negative zero, the result is positive zero.

This thus specifies the following behavior:

max (1, qNaN) -> qNaN (7)

max (1, sNaN) -> qNaN (8)

3.4 ARM® ARMv8.2: sNaN Propagate but qNaN Are Missing
Data

ARM® ARMv8.2 [1] provides scalar, vector, and reduction implementations of min-max

instructions. The scalar instructions include FMINNM and FMAXNM. The vector

instructions are FMINNMP and FMAXNMP. The reduction instructions are

FMINNMV and FMAXNMV. sNaN signals and returns the quiet version of the NaN.

FMAXNM (1, qNaN) -> 1 (9)

FMAXNM (1, sNaN) -> qNaN and signal Invalid (10)

ARMv8 Instruction Set Overview [1] specifies the reduction instructions to reduce

pairwise.

FMAXNMV Sd, Vn.4S Floating-point maxNum element to scalar (vector), equivalent to a

sequence of pairwise reductions.

The non-associativity of 754 ™-2008 [6] max-min operations may cause the reduction

instructions to generate an improper result when an operand is sNaN:

FMAXNMV of [1, 2, 3, sNaN] -> 2 and signal Invalid (11)

3.5 Cadence® Tensilica® Fusion G3: All NaN Are Missing Data

Cadence® Tensilica® Fusion G3 [2] provides scalar, vector, and reduction min-max

instructions. The scalar instructions comprise XT_MAXNUM_S and XT_MINNUM_S.

The vector instructions comprise PDX_MINNUM_MXF32 and

PDX_MAXNUM_MXF32. The reduction instructions comprise

PDX_RMINNUM_MXF32 and PDX_RMAXNUM_MXF32. “Fusion G3 User's

Guide” details their behavior:

MINNUM implements “fmin” in C; while MAXNUM implements “fmax” in C. Both MINNUM

and MAXNUM return a number whenever at least one operand is a number. Both MINNUM and

MAXNUM signal Invalid exception when either operand is a sNaN.

Therefore:

 6

XT_MAXNUM_S (1, qNaN) -> 1 (12)

XT_MAXNUM_S (1, sNaN) -> 1 and signal Invalid (13)

Cadence® Tensilica® implement min-max to be associative, such that the reduction is

well-defined:

PDX_RMAXNUM_MXF32 [1, 2, 3, sNaN] -> 3 and signal Invalid (14)

PDX_RMINNUM_MXF32 [3, 2, 1, sNaN] -> 1 and signal Invalid (15)

3.6 Decimal Arithmetic Specification: sNaN Propagate but qNaN
Are Missing Data

Decimal Arithmetic Specification version 1.70 [4] specifies max, max-magnitude, min,

and min-magnitude operations. [4] provides the details on NaN cases.

If either operand is a NaN then the general rules apply, unless one is a quiet NaN and the other is

numeric, in which case the numeric operand is returned.

The following behavior is observed:

max (1, qNaN) -> 1 (16)

max (1, sNaN) -> qNaN and signal Invalid (17)

3.7 IBM® Power ISA™ 3.0: Two Different Implementations
Coexist

IBM® Power ISA™ Version 3.0 [5] provides two implementations with different

behaviors.

The first behavior is “All NaN Propagate”, implemented with a pair of vector min-max

instructions in binary32. Power ISA™ 3.0 [5], section “6.10.2 Vector Floating-Point

Maximum and Minimum Instructions“ specifies the vmaxfp and vminfp instructions.

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN.

The minimum of +0 and -0 is -0. The minimum of any value and a NaN is a QNaN.

Therefore:

vmaxfp (1, qNaN) -> qNaN (18)

vmaxfp (1, sNaN) -> qNaN and signal Invalid (19)

The second behavior is “sNaN Propagate but qNaN Are Missing Data”, implemented

with another pair of vector-scalar min-max instructions in binary64. Power ISA™ 3.0

[5], section “7.6.3 VSX Instruction Descriptions“ specify the xsmaxdp and xsmindp

instructions.

The maximum of +0 and –0 is +0. The maximum of a QNaN and any value is that value. The

maximum of any value and an SNaN is that SNaN converted to a QNaN.

 7

The minimum of +0 and –0 is –0. The minimum of a QNaN and any value is that value. The

minimum of any value and an SNaN is that SNaN converted to a QNaN.

Therefore:

xsmaxdp (1, qNaN) -> 1 (20)

xsmaxdp (1, sNaN) -> qNaN and signal Invalid (21)

3.8 Intel® AVX-512: sNaN Propagate but qNaN Are Missing Data

Intel® Advanced Vector Extensions 512 (AVX-512) [8] provides scalar, and vector

implementations of min-max instructions. The scalar instructions comprise VRAGESS.

The vector instructions comprise VRAGEPS. An immediate field turns these

instructions into minNum, maxNum, minNumMag, and maxNumMag. AVX-512 [8]

does not implement a reduction version. [3] provides the following table:

TABLE II. AVX-512 VRAGEPD RESULTS OF ONE OR MORE NAN OPERANDS

Src1 Src2 Result IE Signaling Due to

Comparison

Imm8[3:2] Effect to Range

Output

sNaN1 sNaN2 Quiet(sNaN1) Yes Ignored

sNaN1 qNaN2 Quiet(sNaN1) Yes Ignored

sNaN1 Norm2 Quiet(sNaN1) Yes Ignored

qNaN1 sNaN2 Quiet(sNaN2) Yes Ignored

qNaN1 qNaN2 qNaN1 No Applicable

qNaN1 Norm2 Norm2 No Applicable

Norm1 sNaN2 Quiet(sNaN2) Yes Ignored

Norm1 qNaN2 Norm1 No Applicable

In summary:

VRAGESS (1, qNaN) -> 1 (22)

VRAGESS (1, sNaN) -> qNaN and signal Invalid (23)

4 Criteria for Future Min-Max Operations
754™-2018 or 754™-2028 may add one or more sets of new min-max variants with

different names. Criteria for future min-max operations may include primitives,

associativity, commutativity, treatment of signed zero, priority of NaN, and special NaN.

This analysis is intended to assist in future discussions, but does not suggest particular

alternatives.

4.1 Primitives

754™-2018 or 754™-2028 may conclude min-max as high-level routines and exclude

min-max from the floating-point arithmetic standard. Such an exclusion will allow

language standards define, or not define, their own min-max operations. Language

standards might construct min-max routines by choosing 754™ comparison

predicates/relations and a selection based on the predicate/relation results.

 8

Otherwise, 754™-2018 or 754™-2028 may conclude min-max as primitives and include

min-max as operations in the standard. This inclusion will require or recommend

language standards to have same standardized min-max behaviors.

4.2 Associativity

754™ addition and multiplication operations [6] are associative when results are exact.

When results are inexact, rounding errors may cause addition and multiplication to be

non-associative. Min-max operations require no rounding and always produce exact

results. It is thus intuitive to believe min-max is associative. Associativity is especially

important in parallel computing. 754™-2018 or 754™-2028 may consider new min-max

operations with the associative property. Otherwise, 754™-2018 or 754™-2028 may

consider expressively informing readers of non-associativity with a NOTE if defining

new min-max operations with non-associativity.

4.3 Commutativity

754™ addition and multiplication operations [6] are commutative unless both operands

are NaNs. When both operands are NaNs, 754™ allows implementations to propagate

either NaN operand. Some implementations may propagate NaN depending on the order

of operands, as being non-commutative when both operands are NaNs. When at most

one operand is NaN, the result may not be exact, due to rounding error or quieting a

sNaN; but reversing the operands gives the same result.

It is also intuitive to believe min-max are commutative unless two NaNs are involved.

754™-2018 or 754™-2028 might consider new min-max operations with the commutative

property. Otherwise, 754™-2018 or 754™-2028 might consider expressively informing

readers of non-commutativity with a NOTE if defining new min-max operations with

non-commutativity.

4.4 Signed Zero

For comparisons, 754™ defines +0 to be equal to -0 [6]:

Comparisons shall ignore the sign of zero (so +0 = −0).

However, min-max operations have to return a number, instead of a relation or a

predicate. Min/max(+0,-0) could return either +0 or -0. It is preferable to be

commutative and to return the same result, regardless of the order of the operands. Some

existing min-max implementations consider -0 to be strictly smaller than +0. In either

software or hardware, this could be easily implemented by comparing operands as sign-

magnitude integers. 754™-2018 or 754™-2028 might consider new min-max operations

which require or recommend that -0 to be considered strictly smaller than +0.

4.5 NaN Priority

When both operands are NaNs, some existing implementations select sNaN over qNaN.

Some other implementations guarantee NaN associativity and commutativity, by having

minNum(NaN1,NaN2) select a NaN based on totalOrder(NaN1, NaN2)?NaN1:NaN2

and having maxNum(NaN1,NaN2) select a NaN based on of

 9

totalOrder(NaN2,NaN1)?NaN1:NaN2. 754™-2018 or 754™-2028 might consider new

min-max operations which require or recommend associativity/commutativity when both

operands are NaNs. Please refer to [6] for totalOrder definition.

4.6 Special NaN

754™-2018 or 754™-2028 might define a special NaN to represent negligible operands

having no effects on computations. i.e. an intentional absence of an object, an empty

element of a vector, an @NA in spreadsheet vocabulary, or a database NULL. The NaN

propagation rules might exempt the special NaN. The availability of such special NaN

may affect whether and how 754™-2018 or 754™-2028 might define new min-max

operations.

References
[1] ARM Limited, “ARMv8 Instruction Set Overview,” PRD03-GENC-010197 15.0

2011-11-11.

[2] Cadence Design Systems, Inc., “Fusion G3 User’s Guide,” PD-16-3331-10-00 2016-

09.

[3] GitHub, Inc., “x86 Assembly Documentation, AVX-512, updated with Intel®’s

documentation of June 2016,”

https://hjlebbink.github.io/x86doc/html/VRANGEPD.html retrieved 2017-01-17.

[4] IBM Corporation, “Decimal Arithmetic Specification version 1.70, 2009,”

http://speleotrove.com/decimal/daops.html#refmax retrieved 2017-01-17.

[5] IBM Corporation, “Power ISA™ Version 3.0,” 2015-11-30.

[6] Institue of Electrical and Electronics Engineers, Inc., “IEEE standard for floating-

point arithmetic, IEEE Std 754™-2008,” 2008.

[7] Institue of Electrical and Electronics Engineers, Inc., “IEEE standard for floating-

point arithmetic, IEEE Std 754™-2018,” 2018.

[8] Intel Corporation, “Intel® 64 and IA-32 Architectures Software Developer’s

Manual,” 325383-060US 2016-09.

[9] ISO/IEC, “ISO/IEC 9899:2011 International Standard for Programming Languages –

C,” ISO/IEC 9899:2011, 2011.

[10] ISO/IEC, “Technical Specification – Information technology – Programming

languages, their environments, and system software interfaces – Floating-point

extensions for C – Part 1: Binary floating-point arithmetic,” ISO/IEC TS18661-1,

2014-07-15.

[11] Oracle Corporation, “Java™ Platform, Standard Edition 8, API Specification,

Class Math,” https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html retrieved

2017-01-17.

[12] Oracle Corporation, “Java™ Platform, Standard Edition 8, API Specification,

Class StrictMath,”

https://docs.oracle.com/javase/8/docs/api/java/lang/StrictMath.html retrieved 2017-

01-17.

https://hjlebbink.github.io/x86doc/html/VRANGEPD.html
http://speleotrove.com/decimal/daops.html#refmax
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StrictMath.html

