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1 Introduction 
IEEE Standard for Floating-Point Arithmetic 754™ 2008 version (IEEE std 754™-2008) 

[6] specifies four minimum and maximum (min-max) operations: minNum, maxNum, 

minNumMag, and maxNumMag, in sub-clause “5.3.1 General operations”.  These four 

min-max operations are removed from or demoted in IEEE std 754™-2018 [7], due to 

their non-associativity.  No existing implementations become non-conformant due to this 

removal/demotion. 

 

This report explains the technical reasons for the removal/demotion of the above four 

min-max operations, and reviews existing min-max implementations in some 

programming language standards and commercial hardware.  Many implementations 

support several floating-point formats, but this report will only present one or two 

selected formats for an implementation when additional formats are supported in the 

same way. 

 

To be brief, this report focuses on treatments of Not a Number (NaN) by max operations.  

A given implementation may also provide max magnitude, min, and min magnitude 

operations treating signaling NaN (sNaN) and quiet NaN (qNaN) in the same way.  

Please notice that the treatment of NaN by min-max operations does not represent the 

way NaN is treated by other operations in the same implementation. 

 

This report also suggests a possible future course for the development of 754™-2018 or 

754™-2028 min-max operations, by outlining criteria for other min-max variants.  This 

report does not document the intent or application of min-max operations, and does not 

argue for a particular min-max operation. 
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2 Non-Associativity of 754™-2008 Min-Max Definitions 
754™-2008 [6] is the first 754™ standard to define any min-max operations.  In sub-clause 

“5.3.1 General operations”, 754™-2008 [6] defines the following four min-max 

operations: 

 
minNum(x, y) is the canonicalized number x if x < y, y if y < x, the canonicalized number if one 

operand is a number and the other a quiet NaN. Otherwise it is either x or y, canonicalized (this 

means results might differ among implementations). When either x or y is a signaling NaN, then 

the result is according to 6.2. 

maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the canonicalized number if one 

operand is a number and the other a quiet NaN. Otherwise it is either x or y, canonicalized (this 

means results might differ among implementations). When either x or y is a signaling NaN, then 

the result is according to 6.2. 

minNumMag(x, y) is the canonicalized number x if | x| < | y|, y if | y| < | x|, otherwise minNum(x, 

y). 

maxNumMag(x, y) is the canonicalized number x if | x| > | y|, y if | y| > | x|, otherwise maxNum(x, 

y). 
 

In sub-clause “7.2 Invalid operation”, 754™-2008 [6] also requires the following: 
 

For operations producing results in floating-point format, the default result 

of an operation that signals the invalid operation exception shall be a quiet 

NaN that should provide some diagnostic information (see 6.2). 

 

Combining the above requirements from sub-clauses 5.3.1 and 7.2 results in the 

following non-associative behavior affecting all four min-max operations: 

 

minNum( 1, minNum( 1, sNaN ) ) -> minNum( 1, qNaN ) -> 1  (1) 

minNum( minNum( 1, 1 ), sNaN ) -> minNum( 1, sNaN ) -> qNaN (2) 

 

With this non-associativity, different compilations or runs on parallel processing can 

return different answers, depending on whether the sNaN is encountered last or not in a 

sequence of operations. 

3 Language Standards and Commercial Hardware 
Implementations 

754™-2008 [6] and 754™-2018 [7] are really meta-standards for programming language 

standards.  The Floating-Point Working Group reviewed the following implementations 

of language standards and commercial hardware before the removal/demotion of the min-

max operations.  An underlying issue identified was that sometimes a NaN is the most 

interesting part of a vector; sometimes the least. 

 

Different language and hardware implementations treat NaN differently.  Some of these 

implementations treat sNaN and qNaN in the same way, while others have different 

treatments depending on whether the NaN is signaling or quiet.  Some implement two 

sets of min-max operations with different behaviors. 
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An implement may offer min-max in scalar only, scalar and vector, or scalar, vector and 

vector reduction forms.  The following table lists implementations with their scalar min-

max behaviors for quick comparison. 

TABLE I.  SCALAR MIN-MAX BEHAVIOR COMPARISON 

Implementations sNaN treatment qNaN treatment Comments 

C11 fmin / fmax (1, sNaN) -> 

undefined 

(1, qNaN) -> 1 qNaN as 

“missing data” 

TS18661-1 fmin / fmax (1, sNaN) -> qNaN (1, qNaN) -> 1 qNaN as 

“missing data” 

sNaN 

“propagate” 

Java™ Platform SE 8 Strictmath min / 

max 

(1, sNaN) -> qNaN (1, qNaN) -> qNaN NaN 

“propagate” 

Java™ Platform SE 8 Math min / max (1, sNaN) -> qNaN (1, qNaN) -> qNaN NaN 

“propagate” 

ARM® ARMv8.2 FMINNM / FMAXNM (1, sNaN) -> qNaN 

and signal Invalid 

(1, qNaN) -> 1 qNaN as 

“missing data” 

sNaN 

“propagate” 

Cadence® Tensilica® Fusion G3 

XT_MINNUM_S / XT_MAXNUM_S 

(1, sNaN) -> 1 and 

signal Invalid 

(1, qNaN) -> 1 NaN as 

“missing data” 

Decimal Arithmetic Specification version 

1.70 min / max 

(1, sNaN) -> qNaN 

and signal Invalid 

(1, qNaN) -> 1 qNaN as 

“missing data” 

sNaN 

“propagate” 

IBM® Power ISA™ Version 3.0 vminfp / 

vmaxfp for binary32 

(1, sNaN) -> qNaN 

and signal Invalid 

(1, qNaN) -> qNaN NaN 

“propagate” 

IBM® Power ISA™ Version 3.0 xsmindp 
/ xsmaxdp for binary64 

(1, sNaN) -> qNaN 

and signal Invalid 

(1, qNaN) -> 1 qNaN as 

“missing data” 

sNaN 

“propagate” 

Intel® AVX-512 VRAGESS (1, sNaN) -> qNaN 

and signal Invalid 

(1, qNaN) -> 1 qNaN as 

“missing data” 

sNaN 

“propagate” 

 

These implementations behave differently when an operand is a number and the other 

operand is either sNaN or qNaN.  For details and additional information, please look into 

each section of this chapter. 

3.1 C11: qNaN Are Missing Data 

ISO/IEC 9899:2011 International Standard for Programming Languages – C (C11) [9] 

defines min-max functions.  C11 sub-clauses 7.12.12.2 and 7.12.12.3 describe fmax and 

fmix functions, respectively: 

 
The fmax functions determine the maximum numeric value of their arguments.242) 

The fmin functions determine the minimum numeric value of their arguments.243) 

 
242) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, 

then the fmax functions choose the numeric value. See F.10.9.2. 

243) The fmin functions are analogous to the fmax functions in their treatment of NaNs. 
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C11 [9] Annex F.2.1 clarifies the NaN denotation of C11: 

 
This specification does not define the behavior of signaling NaNs.359) It generally uses the term 

NaN to denote quiet NaNs. 

 

359) Since NaNs created by IEC 60559 operations are always quiet, quiet NaNs (along with 

infinities) are sufficient for closure of the arithmetic.  

 

The above descriptions specify the following behavior: 

 

fmax (1, qNaN) -> 1 (3) 

fmax (1, sNaN) -> undefined (4) 

 

3.2 TS18661-1: sNaN Propagate but qNaN Are Missing Data 

ISO/IEC TS18661-1 Technical Specification – Information technology – Programming 

languages, their environments, and system software interfaces – Floating-point 

extensions for C – Part 1: Binary floating-point arithmetic (TS18661-1) [10] binds C 

operation fmin to ISO/IEC/IEEE 60559:2011 (IEEE 754™-2008) [6] operation minNum, 

and fmax to maxNum.  TS18661-1 [10] changes the footnotes 242) and 243) in the C 

standard to exclude sNaN: 

 
Change footnotes 242) and 243) from:  

242) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, 

then the fmax functions choose the numeric value. See F.10.9.2.  

243) The fmin functions are analogous to the fmax functions in their treatment of NaNs.  

to:  

242) Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the 

other numeric, then the fmax functions choose the numeric value. See F.10.9.2.  

243) The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs. 
   

As a result, fmax will have the following new behavior: 

 

fmax (1, qNaN) -> 1  (5) 

fmax (1, sNaN) -> qNaN (6) 

 

3.3 Java™ Platform SE 8: All NaN Propagate 

According to Java™ Platform, Standard Edition 8, API Specification, both 

java.lang.Strictmath [12] and java.lang.Math [11] provide min-max methods.  

java.lang.Strictmath and java.lang.Math contains the identical method details: 

 
public static float max(float a, float b) 
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Returns the greater of two float values. That is, the result is the argument closer to positive 

infinity. If the arguments have the same value, the result is that same value. If either value is NaN, 

then the result is NaN. Unlike the numerical comparison operators, this method considers negative 

zero to be strictly smaller than positive zero. If one argument is positive zero and the other 

negative zero, the result is positive zero. 

 

This thus specifies the following behavior: 

 

max (1, qNaN) -> qNaN (7) 

max (1, sNaN) -> qNaN (8) 

 

3.4 ARM® ARMv8.2: sNaN Propagate but qNaN Are Missing 
Data 

ARM® ARMv8.2 [1] provides scalar, vector, and reduction implementations of min-max 

instructions.  The scalar instructions include FMINNM and FMAXNM.  The vector 

instructions are FMINNMP and FMAXNMP.  The reduction instructions are 

FMINNMV and FMAXNMV.  sNaN signals and returns the quiet version of the NaN. 

 

FMAXNM (1, qNaN) -> 1    (9) 

FMAXNM (1, sNaN) -> qNaN and signal Invalid (10) 

 

ARMv8 Instruction Set Overview [1] specifies the reduction instructions to reduce 

pairwise. 

 
FMAXNMV Sd, Vn.4S Floating-point maxNum element to scalar (vector), equivalent to a 

sequence of pairwise reductions. 

 

The non-associativity of 754 ™-2008 [6] max-min operations may cause the reduction 

instructions to generate an improper result when an operand is sNaN: 

 

FMAXNMV of [1, 2, 3, sNaN] -> 2 and signal Invalid (11) 

 

3.5 Cadence® Tensilica® Fusion G3: All NaN Are Missing Data 

Cadence® Tensilica® Fusion G3 [2] provides scalar, vector, and reduction min-max 

instructions.  The scalar instructions comprise XT_MAXNUM_S and XT_MINNUM_S.  

The vector instructions comprise PDX_MINNUM_MXF32 and 

PDX_MAXNUM_MXF32.  The reduction instructions comprise 

PDX_RMINNUM_MXF32 and PDX_RMAXNUM_MXF32.  “Fusion G3 User's 

Guide” details their behavior: 

 
MINNUM implements “fmin” in C; while MAXNUM implements “fmax” in C. Both MINNUM 

and MAXNUM return a number whenever at least one operand is a number. Both MINNUM and 

MAXNUM signal Invalid exception when either operand is a sNaN. 

 

Therefore: 
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XT_MAXNUM_S (1, qNaN) -> 1    (12) 

XT_MAXNUM_S (1, sNaN) -> 1 and signal Invalid (13) 

 

Cadence® Tensilica® implement min-max to be associative, such that the reduction is 

well-defined: 

 

PDX_RMAXNUM_MXF32 [1, 2, 3, sNaN] -> 3 and signal Invalid (14) 

PDX_RMINNUM_MXF32 [3, 2, 1, sNaN] -> 1 and signal Invalid (15) 

3.6 Decimal Arithmetic Specification: sNaN Propagate but qNaN 
Are Missing Data 

Decimal Arithmetic Specification version 1.70 [4] specifies max, max-magnitude, min, 

and min-magnitude operations.  [4] provides the details on NaN cases. 

 
If either operand is a NaN then the general rules apply, unless one is a quiet NaN and the other is 

numeric, in which case the numeric operand is returned. 

 

The following behavior is observed: 

 

max (1, qNaN) -> 1    (16) 

max (1, sNaN) -> qNaN and signal Invalid (17) 

 

3.7 IBM® Power ISA™ 3.0: Two Different Implementations 
Coexist 

IBM® Power ISA™ Version 3.0 [5] provides two implementations with different 

behaviors. 

 

The first behavior is “All NaN Propagate”, implemented with a pair of vector min-max 

instructions in binary32.  Power ISA™ 3.0 [5], section “6.10.2 Vector Floating-Point 

Maximum and Minimum Instructions“ specifies the vmaxfp and vminfp instructions. 

 
The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN. 

The minimum of +0 and -0 is -0. The minimum of any value and a NaN is a QNaN. 

 

Therefore: 

vmaxfp (1, qNaN) -> qNaN     (18) 

vmaxfp (1, sNaN) -> qNaN and signal Invalid  (19) 

 

The second behavior is “sNaN Propagate but qNaN Are Missing Data”, implemented 

with another pair of vector-scalar min-max instructions in binary64.  Power ISA™ 3.0 

[5], section “7.6.3 VSX Instruction Descriptions“ specify the xsmaxdp and xsmindp 

instructions. 

 
The maximum of +0 and –0 is +0. The maximum of a QNaN and any value is that value. The 

maximum of any value and an SNaN is that SNaN converted to a QNaN. 
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The minimum of +0 and –0 is –0. The minimum of a QNaN and any value is that value. The 

minimum of any value and an SNaN is that SNaN converted to a QNaN. 

 

Therefore: 

xsmaxdp (1, qNaN) -> 1    (20) 

xsmaxdp (1, sNaN) -> qNaN and signal Invalid (21) 

 

3.8 Intel® AVX-512: sNaN Propagate but qNaN Are Missing Data 

Intel® Advanced Vector Extensions 512 (AVX-512) [8] provides scalar, and vector 

implementations of min-max instructions.  The scalar instructions comprise VRAGESS.  

The vector instructions comprise VRAGEPS.  An immediate field turns these 

instructions into minNum, maxNum, minNumMag, and maxNumMag.  AVX-512 [8] 

does not implement a reduction version.  [3] provides the following table: 

TABLE II.  AVX-512 VRAGEPD RESULTS OF ONE OR MORE NAN OPERANDS 

Src1 Src2 Result IE Signaling Due to 

Comparison 

Imm8[3:2] Effect to Range 

Output 

sNaN1 sNaN2 Quiet(sNaN1) Yes Ignored 

sNaN1 qNaN2 Quiet(sNaN1) Yes Ignored 

sNaN1 Norm2 Quiet(sNaN1) Yes Ignored 

qNaN1 sNaN2 Quiet(sNaN2) Yes Ignored 

qNaN1 qNaN2 qNaN1 No Applicable 

qNaN1 Norm2 Norm2 No Applicable 

Norm1 sNaN2 Quiet(sNaN2) Yes Ignored 

Norm1 qNaN2 Norm1 No Applicable 

 

In summary: 

VRAGESS (1, qNaN) -> 1    (22) 

VRAGESS (1, sNaN) -> qNaN and signal Invalid (23) 

 

4 Criteria for Future Min-Max Operations 
754™-2018 or 754™-2028 may add one or more sets of new min-max variants with 

different names.  Criteria for future min-max operations may include primitives, 

associativity, commutativity, treatment of signed zero, priority of NaN, and special NaN.  

This analysis is intended to assist in future discussions, but does not suggest particular 

alternatives. 

4.1 Primitives 

754™-2018 or 754™-2028 may conclude min-max as high-level routines and exclude 

min-max from the floating-point arithmetic standard.  Such an exclusion will allow 

language standards define, or not define, their own min-max operations.  Language 

standards might construct min-max routines by choosing 754™ comparison 

predicates/relations and a selection based on the predicate/relation results. 
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Otherwise, 754™-2018 or 754™-2028 may conclude min-max as primitives and include 

min-max as operations in the standard.  This inclusion will require or recommend 

language standards to have same standardized min-max behaviors. 

4.2 Associativity 

754™ addition and multiplication operations [6] are associative when results are exact.  

When results are inexact, rounding errors may cause addition and multiplication to be 

non-associative.  Min-max operations require no rounding and always produce exact 

results.  It is thus intuitive to believe min-max is associative.  Associativity is especially 

important in parallel computing.  754™-2018 or 754™-2028 may consider new min-max 

operations with the associative property.  Otherwise, 754™-2018 or 754™-2028 may 

consider expressively informing readers of non-associativity with a NOTE if defining 

new min-max operations with non-associativity. 

4.3 Commutativity 

754™ addition and multiplication operations [6] are commutative unless both operands 

are NaNs.  When both operands are NaNs, 754™ allows implementations to propagate 

either NaN operand.  Some implementations may propagate NaN depending on the order 

of operands, as being non-commutative when both operands are NaNs.  When at most 

one operand is NaN, the result may not be exact, due to rounding error or quieting a 

sNaN; but reversing the operands gives the same result. 

 

It is also intuitive to believe min-max are commutative unless two NaNs are involved.  

754™-2018 or 754™-2028 might consider new min-max operations with the commutative 

property.  Otherwise, 754™-2018 or 754™-2028 might consider expressively informing 

readers of non-commutativity with a NOTE if defining new min-max operations with 

non-commutativity. 

4.4 Signed Zero 

For comparisons, 754™ defines +0 to be equal to -0 [6]: 

 
Comparisons shall ignore the sign of zero (so +0 = −0). 

 

However, min-max operations have to return a number, instead of a relation or a 

predicate.  Min/max(+0,-0) could return either +0 or -0.  It is preferable to be 

commutative and to return the same result, regardless of the order of the operands.  Some 

existing min-max implementations consider -0 to be strictly smaller than +0.  In either 

software or hardware, this could be easily implemented by comparing operands as sign-

magnitude integers.  754™-2018 or 754™-2028 might consider new min-max operations 

which require or recommend that -0 to be considered strictly smaller than +0. 

4.5 NaN Priority 

When both operands are NaNs, some existing implementations select sNaN over qNaN.  

Some other implementations guarantee NaN associativity and commutativity, by having 

minNum(NaN1,NaN2) select a NaN based on totalOrder(NaN1, NaN2)?NaN1:NaN2 

and having maxNum(NaN1,NaN2) select a NaN based on of 
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totalOrder(NaN2,NaN1)?NaN1:NaN2.  754™-2018 or 754™-2028 might consider new 

min-max operations which require or recommend associativity/commutativity when both 

operands are NaNs.  Please refer to [6] for totalOrder definition. 

4.6 Special NaN 

754™-2018 or 754™-2028 might define a special NaN to represent negligible operands 

having no effects on computations.  i.e. an intentional absence of an object, an empty 

element of a vector, an @NA in spreadsheet vocabulary, or a database NULL.  The NaN 

propagation rules might exempt the special NaN.  The availability of such special NaN 

may affect whether and how 754™-2018 or 754™-2028 might define new min-max 

operations. 
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