
1

CAN Primer

Version 2.0

Updated Summer 2010 Robert Boys bob.boys@arm.com

Agenda:

What exactly is CAN ?

Identifiers – what they are.

What does the data look like ?

What the CAN wires look like.

Example CAN circuits.

Arbitration – who gets priority.

Errors and how to detect them !

Some Tips and Hints….

Myths about CAN:

• Is not only for automotive applications !

• Can be found everywhere.

• Automation is one (CANopen, DeviceNet)

• Is easy to implement…no mystery anymore

• …unless you use some tricky protocols.

• You can “roll your own” for simplicity.

• Can gateway to USB, Ethernet, RS232 and

other networks to form larger systems.

Why Use CAN ?

Electrically robust with built-in error and
arbitration features. These are automatic !

Differential pair reduces EMI in/out.

Many controllers and parts available.

Plenty of software and hardware tools.

Really, really easy to add another node.

Hard work is done by the CAN controller.

Many chips have implemented CAN.

Largest CAN network in world is believed
to be the Vancouver Olympic sign.

What exactly is CAN ?

CAN – Controller Area Network

The Bosch CAN spec includes:

Some of the physical layer (wires).

Message frame description.

Attributes – Peer-to-Peer network.

Arbitration scheme - multiple messages.

Some error detection and handling.

The CAN spec does not include:

Any high level addressing modes.

Any message descriptions or groupings.

Diagnostics or messages streams.

Any acknowledgement a message reached

its intended target.

Bus Speed: see ISO 11898-2, J2284.

The physical link – you can use anything.

People often include these items. Shouldn’t !

CAN Speeds

Is specified from ~10 Kbps to 1Mbps.

Can’t change speed dynamically…ever !

125, 250 & 500 Kbps common.

Longer cable runs means slower frequency.

1 Mbps a bit hard to manage in a real system.

High Points of the CAN Bus

Uses a Differential twisted pair of wires.

The highest priority message gets thru.

Uses non-destructive arbitration.

The priority of message is its identifier.

0 has the highest priority. Always.

No Master or Slave – Peer to Peer.

All nodes see all messages on network.

…except their own…..

Construction of a CAN Network

Node 1 Node 3 Node 6Node

5

Node 4Node 2

a b

a,b = 120 Ω ½ watt termination resistors.

Drops use the same twisted pair of wires as the backbone.

drops

The main CAN backbone and drops are comprised

of a twisted pair of wires.

Example CAN Node

Typical microcontroller

A real CAN circuit:

R12, R13 & C45 create “Split Termination” for

extra noise immunity instead of one 120 ohm.

Note: A Common Mode Choke can be used.

TIP: Use USB cable to power Keil boards.

Three Flavours of CAN

The difference between these three is the CAN transceiver and normally the speed.

☺ ☺

Differential Twisted Pair

CAN transceiver converts single-ended Tx

to a differential pair output.

ALSO – takes differential pair and converts

back to Rx.

Node sees in and out at same time.

Interference coming in & out cancels out.

Twisted pair and receiver ccts does this.

Recessive and Dominant Bits

 Recessive is 2.5 volts CAN Hi and Lo.

Difference is 2.5 – 2.5 = 0 volts. Call this a “1”

 Dominant is CAN_Hi 3.5v CAN_Lo 1.5v.

Difference is 3.5 – 1.5 = 2.0 volts. Call this a “0”

The important

voltage is the

difference between

CAN Hi and Lo

and not to ground.

Recessive and Dominant Bits

Any node can pull Hi and Lo apart on the bus.

No node can force Recessive.

This means an idle bus has zero volts Hi & Lo
and about 2.5 volts to ground.

This is how arbitration works.

A bus can sit idle for a hundred years and
every node will see the first message sent.

The clocks in CAN need to be good ones.

The Differential Signals

Bottom

signals are

algebraically

subtracted to

result in the

top signal:

A problem !!

Older system works OK !

Bit Stuffing

Nodes need an active clock to stay in sync.

Must come from the bus transitions.

If no change for 5 bit times – will add a bit.

CAN frame is actually lengthened by this.

CAN controllers add & remove stuffed bits.

Invisible to the programmer.

Only an oscilloscope will show this...and here

is where a problem can surface !

Bit stuffing makes the frame look like it has jitter !

It does not….but it can be confusing.

Rain sensor output

CAN decode

Differential CAN

signal

SPI signals in ECU

A CAN Frame Decoded:

Data Link: the frame.

CAN is a serial bus. 1 or 2 wires. (SW-CAN)

CAN 2.0 A Standard

11 bit identifiers – 2,048 ID’s. 0 – 7FF

CAN 2.0 B Extended
29 bit identifiers – 536 million ID’s.

0 – 1FFF FFFF

Both 11 and 29 bit can be used on the bus.

CAN controllers can easily sort them out.

A little more…

 0 to 8 bytes of data per CAN frame.

This can be changed dynamically.

Bus length to 40 meters @ 1 Mbps,

1 meter drops. Slower = longer.

Two 120 termination resistors needed at each

end of the bus. (measure 60 ohms)

Standard and Extended CAN Frames

SOF - Start of Frame
SRR - Substitute Remote Request

IDE - Identifier Extension
RTR - Remote Transmission Request

R0 - Reserved bit

Extended Frame: SRR=1, IDE=1

R1 - Reserved bit
DLC - Data Length Code

CRC - Cyclic Redundancy Check
DEL - Delimiter

ACK - Acknowledgement bit

S
R

R

11-bit

Identifier

Data Field

18-bit

Identifier

Arbitration Field
Control

Field
CRC Field ACK

Field

End of

Frame

IF
S

Data Field
Arbitration

Field

Control

Field CRC Field
ACK

Field

End of

Frame

IF
S

11-bit

Identifier
0-8 Bytes

0-8 Bytes

15-bit CRC

15-bit CRC

D
E

L

D
E

L

D
E

L

D
E

L

A
C

K

A
C

K

7

7 3

3
DLC

(4)

DLC

(4)

Designers need only fill in the RED lines !

CAN Programming Model

11 bit ID

29 bit ID

IDE 1 bit

DLC 4 bit

Data bytes: 0, 1, 2, 3, 4, 5, 6 ,7 or 8 bytes (0 to 64 bits)

*

*

IDE = 0

IDE = 1

DLC = 0 thru 8

Is the frame 11 or 29 bits long ?

How many data bytes are there ?

Acknowledge: Newbie mistake # 1.

 The ACK bit.

 Sender sets this Recessive.

 Someone has to assert this to dominant.

 Else: sender re-transmits again forever.

 So – need at least one other CAN node.

 Is merely 2 µsec wide @ 500 Kbps.

37
A

C
K

15-bit CRC0-8 Bytes
DLC

(4)

R
T

R

11-bit Identifier

Data Frame

A bug turned into a feature…..

 If bus gets trashed after sender finishes…

 But before others think is over…

 Bus fault occurs and message retransmitted.

 SO: don’t increment or toggle a value !

 If you want a variable to be 64 – say it in full.

37
A

C
K

15-bit CRC0-8 Bytes
DLC

(4)

R
T

R

11-bit Identifier

Data Frame

Priority Levels

Message with highest priority gets thru.

Lowest Identifier has priority.

000 beats 001, 123 beats 256. Always.

Arbitration evaluated in real-time.

Uses Recessive and Dominant bits.

A node can (and must!) see itself and

others on the bus in real time.

Note: a node can’t see its own ID and data.

Arbitration Notes:

Illegal to have same identifier at same time.

Possible a node will never get priority.

CAN is not deterministic. TTCAN is though.

Note: if 11 and 29 bit same identifier at the

same time – 11 bit wins arbitration.

 i.e. 11010101010 & (wins because IDE = 0)

11010101010101100101001101000

What can you put into the ID ?

Anything at all ! CAN does not specify.

IDs will get on bus according to priority.

Your System Designer will not agree !

Normally: addresses of modules or devices.

Or tasks….Request or Response

Acknowledge (don’t confuse with ACK)

ID values are carefully selected for filtering.

What can put into Data ?

Anything at all ! CAN does not specify.

Will not be prioritized by CAN controller.

Your System Designer will not agree !

Normally: Services, Modes, data (signals).

Data transfers etc.

Multi-byte data control bytes. i.e. # bytes sent

Number of data bytes can be changed.

Diagnostics and Standard Traffic

Standard Mode: ordinary data from

ordinary vehicle operation.

- Nodes are operating normally.

Diagnostic Mode: Nodes are put into a

special mode for queries by a scantool.

- Is problem or inquiry related.

Diagnostics handle “Limp Home Mode”

Not CAN spec – higher layers

Polled and Periodic Messages

Periodic Messages: messages broadcast

continually on the bus at certain rate.

Polled Messages: messages provided due

to a query by a node or diagnostic tool.

Are created by high level – not CAN.

Such as J1939 and proprietary systems.

000:000 0B2 00 48 00 48 00 00

004:510 2D2 00

008:240 O25 00 A2 00 00 00 00 00 CF

010:240 0B0 00 48 00 48 00 00

011:810 2C4 00 00 00 20 00 80 21 8F

012:260 0B2 00 48 00 48 00 00

014:360 223 00 00 00 00 00 00 00 2D

016:420 224 00 00 00 00 00 00 00 00

020:510 O25 00 A2 00 00 00 00 00 CF

021:030 2C1 08 05 83 28 06 EC 00 75

022:500 0B0 00 48 00 48 00 00

024:540 0B2 00 48 00 48 00 00

029:220 2D0 00 00 08 00 10 00 00 F2

032:770 O25 00 A2 00 00 00 00 00 CF

034:770 0B0 00 48 00 48 00 00

035:370 2C4 00 00 00 20 00 80 21 8F

036:260 2D2 00

036:840 0B2 00 48 00 48 00 00

Real CAN
traffic on a
500 Kbps

car.

Real J1939 Traffic

CAN Summary

This gives a basic understanding of CAN.

From here you can go to:

High level protocols connect to CAN

J1939, CANopen, MilCAN, J2284, …

Now: a bit about tools….and then errors

and some handy hints…

Tools

Design, development and maintenance.

Hardware and software.

Cheap, average and high cost.

Vastly different capabilities.

Designed to save you time and money.

Low cost tools are alluring but….

Costs you time and money and worse….

Adverse to critical Time-To-Market.

Awkward, hard to use, hard to setup.

Limited info provided – no trigger or filters.

Some interesting tests might not happen.

Time is better to use for testing product.

Cheap Tools

Network Tools –

Bus Analyzers and CAN Oscilloscopes

 Development of network and diagnostics

 Sits on a bus and monitor.

 Can send and receive messages on bus.

 Save messages, trigger, filter, respond.

CAN Faults

Regular dual-wire CAN redundancy:

One CAN open or shorted to ground.

Note: ground must be connected for open.

But not to each other or both to ground.

Ground can be open.

or a ground loop can exist.

Error Frames

Any node see something wrong on the bus.

Makes bus dominant.

All nodes knows this is an error frame.

Sender stops transmitting.

Increments its Transmit Error Counter by 8.

If TEC < FF, resends message else busoff.

Others increment their Receive Error Counters.

Note: only a node can boot itself off the bus.

Error Counters

Two 8 bit counters in CAN controller.

Counts the errors.

Inc. & decrement.

Up by 8, down by 1

Can read as an
indication of bus health.

Busoff return: RESET
or 128 good messages
:its what you say.

TEC REC

Reset

96

127

255

Note: 96 is considered a significant error level

Bus Off

CAN Bit Timing

Each bit consists of a # of time quantum (tq).

TQs added and subtracted as clock syncs.

Tqs are set by designer in CAN controller chip.

See your datasheet for help.
1 bit time

1 time quantum (tq)

sample point

transmit point

Sync-

segment
Propagation

Time Segment

Phase

Buffer

Segment 1

Phase

Buffer

Segment 2

CAN Filters

Typical microcontroller

F
ilt

e
rs

Allow only selected messages through !

On ID and sometimes 1st byte of data.

This is why IDs are carefully chosen.

CAN Statistics

Periodic Auto bus rates about 6 – 7 %

GM periodic about 15 % @ 500 Kbps.

Getting higher and higher.

Design in some slack for expansion.

Tips & Hints

2 nodes: never send the same message.

Get a bus error or both think successful.

Use same # data bytes all the time.

Software is much simpler to debug and
maintain.

Never change the bus speed !

Beware of short bursts of high bus traffic.

Read TEC & REC to view state of your bus

If use a protocol – implement all of it !

Through data on the floor but take care of it.

more Tips & Hints

Don’t mix one protocol with another

J1939 and CANopen will crash…maybe…

Use defaults – don’t do anything “elegant”

 You don’t want to be the first to find that bug !

Use timeouts – don’t hang until RESET.

Don’t make timeouts too tight – sloppy is
better.

Select IDs with care for easy filtering.

Don’t fudge the bus. Fix it.

And a few more….

Design in some “elbow room”.

Reserve some IDs for expansion/bug fixes.

Take care of “Reserved Bits”.

Remember protocols are designed by
committees. Investigate odd things.

Watch out for the simple things…..

The End…for now...

See www.keil.com/can

…and look for my CAN Primer.

Versions for Luminary, NXP and ST.

 ISO 11898-1,-2-3-4 defines CAN further.

Testing CAN Physical layers:

www.dgtech.com/pdfs/techpapers/CIA_article.pdf

http://www.keil.com/can

