
1

CAN Primer

Version 2.0

Updated Summer 2010 Robert Boys bob.boys@arm.com

Agenda:

What exactly is CAN ?

Identifiers – what they are.

What does the data look like ?

What the CAN wires look like.

Example CAN circuits.

Arbitration – who gets priority.

Errors and how to detect them !

Some Tips and Hints….

Myths about CAN:

• Is not only for automotive applications !

• Can be found everywhere.

• Automation is one (CANopen, DeviceNet)

• Is easy to implement…no mystery anymore

• …unless you use some tricky protocols.

• You can “roll your own” for simplicity.

• Can gateway to USB, Ethernet, RS232 and

other networks to form larger systems.

Why Use CAN ?

Electrically robust with built-in error and
arbitration features. These are automatic !

Differential pair reduces EMI in/out.

Many controllers and parts available.

Plenty of software and hardware tools.

Really, really easy to add another node.

Hard work is done by the CAN controller.

Many chips have implemented CAN.

Largest CAN network in world is believed
to be the Vancouver Olympic sign.

What exactly is CAN ?

CAN – Controller Area Network

The Bosch CAN spec includes:

Some of the physical layer (wires).

Message frame description.

Attributes – Peer-to-Peer network.

Arbitration scheme - multiple messages.

Some error detection and handling.

The CAN spec does not include:

Any high level addressing modes.

Any message descriptions or groupings.

Diagnostics or messages streams.

Any acknowledgement a message reached

its intended target.

Bus Speed: see ISO 11898-2, J2284.

The physical link – you can use anything.

People often include these items. Shouldn’t !

CAN Speeds

Is specified from ~10 Kbps to 1Mbps.

Can’t change speed dynamically…ever !

125, 250 & 500 Kbps common.

Longer cable runs means slower frequency.

1 Mbps a bit hard to manage in a real system.

High Points of the CAN Bus

Uses a Differential twisted pair of wires.

The highest priority message gets thru.

Uses non-destructive arbitration.

The priority of message is its identifier.

0 has the highest priority. Always.

No Master or Slave – Peer to Peer.

All nodes see all messages on network.

…except their own…..

Construction of a CAN Network

Node 1 Node 3 Node 6Node

5

Node 4Node 2

a b

a,b = 120 Ω ½ watt termination resistors.

Drops use the same twisted pair of wires as the backbone.

drops

The main CAN backbone and drops are comprised

of a twisted pair of wires.

Example CAN Node

Typical microcontroller

A real CAN circuit:

R12, R13 & C45 create “Split Termination” for

extra noise immunity instead of one 120 ohm.

Note: A Common Mode Choke can be used.

TIP: Use USB cable to power Keil boards.

Three Flavours of CAN

The difference between these three is the CAN transceiver and normally the speed.

☺ ☺

Differential Twisted Pair

CAN transceiver converts single-ended Tx

to a differential pair output.

ALSO – takes differential pair and converts

back to Rx.

Node sees in and out at same time.

Interference coming in & out cancels out.

Twisted pair and receiver ccts does this.

Recessive and Dominant Bits

 Recessive is 2.5 volts CAN Hi and Lo.

Difference is 2.5 – 2.5 = 0 volts. Call this a “1”

 Dominant is CAN_Hi 3.5v CAN_Lo 1.5v.

Difference is 3.5 – 1.5 = 2.0 volts. Call this a “0”

The important

voltage is the

difference between

CAN Hi and Lo

and not to ground.

Recessive and Dominant Bits

Any node can pull Hi and Lo apart on the bus.

No node can force Recessive.

This means an idle bus has zero volts Hi & Lo
and about 2.5 volts to ground.

This is how arbitration works.

A bus can sit idle for a hundred years and
every node will see the first message sent.

The clocks in CAN need to be good ones.

The Differential Signals

Bottom

signals are

algebraically

subtracted to

result in the

top signal:

A problem !!

Older system works OK !

Bit Stuffing

Nodes need an active clock to stay in sync.

Must come from the bus transitions.

If no change for 5 bit times – will add a bit.

CAN frame is actually lengthened by this.

CAN controllers add & remove stuffed bits.

Invisible to the programmer.

Only an oscilloscope will show this...and here

is where a problem can surface !

Bit stuffing makes the frame look like it has jitter !

It does not….but it can be confusing.

Rain sensor output

CAN decode

Differential CAN

signal

SPI signals in ECU

A CAN Frame Decoded:

Data Link: the frame.

CAN is a serial bus. 1 or 2 wires. (SW-CAN)

CAN 2.0 A Standard

11 bit identifiers – 2,048 ID’s. 0 – 7FF

CAN 2.0 B Extended
29 bit identifiers – 536 million ID’s.

0 – 1FFF FFFF

Both 11 and 29 bit can be used on the bus.

CAN controllers can easily sort them out.

A little more…

 0 to 8 bytes of data per CAN frame.

This can be changed dynamically.

Bus length to 40 meters @ 1 Mbps,

1 meter drops. Slower = longer.

Two 120 termination resistors needed at each

end of the bus. (measure 60 ohms)

Standard and Extended CAN Frames

SOF - Start of Frame
SRR - Substitute Remote Request

IDE - Identifier Extension
RTR - Remote Transmission Request

R0 - Reserved bit

Extended Frame: SRR=1, IDE=1

R1 - Reserved bit
DLC - Data Length Code

CRC - Cyclic Redundancy Check
DEL - Delimiter

ACK - Acknowledgement bit

S
R

R

11-bit

Identifier

Data Field

18-bit

Identifier

Arbitration Field
Control

Field
CRC Field ACK

Field

End of

Frame

IF
S

Data Field
Arbitration

Field

Control

Field CRC Field
ACK

Field

End of

Frame

IF
S

11-bit

Identifier
0-8 Bytes

0-8 Bytes

15-bit CRC

15-bit CRC

D
E

L

D
E

L

D
E

L

D
E

L

A
C

K

A
C

K

7

7 3

3
DLC

(4)

DLC

(4)

Designers need only fill in the RED lines !

CAN Programming Model

11 bit ID

29 bit ID

IDE 1 bit

DLC 4 bit

Data bytes: 0, 1, 2, 3, 4, 5, 6 ,7 or 8 bytes (0 to 64 bits)

*

*

IDE = 0

IDE = 1

DLC = 0 thru 8

Is the frame 11 or 29 bits long ?

How many data bytes are there ?

Acknowledge: Newbie mistake # 1.

 The ACK bit.

 Sender sets this Recessive.

 Someone has to assert this to dominant.

 Else: sender re-transmits again forever.

 So – need at least one other CAN node.

 Is merely 2 µsec wide @ 500 Kbps.

37
A

C
K

15-bit CRC0-8 Bytes
DLC

(4)

R
T

R

11-bit Identifier

Data Frame

A bug turned into a feature…..

 If bus gets trashed after sender finishes…

 But before others think is over…

 Bus fault occurs and message retransmitted.

 SO: don’t increment or toggle a value !

 If you want a variable to be 64 – say it in full.

37
A

C
K

15-bit CRC0-8 Bytes
DLC

(4)

R
T

R

11-bit Identifier

Data Frame

Priority Levels

Message with highest priority gets thru.

Lowest Identifier has priority.

000 beats 001, 123 beats 256. Always.

Arbitration evaluated in real-time.

Uses Recessive and Dominant bits.

A node can (and must!) see itself and

others on the bus in real time.

Note: a node can’t see its own ID and data.

Arbitration Notes:

Illegal to have same identifier at same time.

Possible a node will never get priority.

CAN is not deterministic. TTCAN is though.

Note: if 11 and 29 bit same identifier at the

same time – 11 bit wins arbitration.

 i.e. 11010101010 & (wins because IDE = 0)

11010101010101100101001101000

What can you put into the ID ?

Anything at all ! CAN does not specify.

IDs will get on bus according to priority.

Your System Designer will not agree !

Normally: addresses of modules or devices.

Or tasks….Request or Response

Acknowledge (don’t confuse with ACK)

ID values are carefully selected for filtering.

What can put into Data ?

Anything at all ! CAN does not specify.

Will not be prioritized by CAN controller.

Your System Designer will not agree !

Normally: Services, Modes, data (signals).

Data transfers etc.

Multi-byte data control bytes. i.e. # bytes sent

Number of data bytes can be changed.

Diagnostics and Standard Traffic

Standard Mode: ordinary data from

ordinary vehicle operation.

- Nodes are operating normally.

Diagnostic Mode: Nodes are put into a

special mode for queries by a scantool.

- Is problem or inquiry related.

Diagnostics handle “Limp Home Mode”

Not CAN spec – higher layers

Polled and Periodic Messages

Periodic Messages: messages broadcast

continually on the bus at certain rate.

Polled Messages: messages provided due

to a query by a node or diagnostic tool.

Are created by high level – not CAN.

Such as J1939 and proprietary systems.

000:000 0B2 00 48 00 48 00 00

004:510 2D2 00

008:240 O25 00 A2 00 00 00 00 00 CF

010:240 0B0 00 48 00 48 00 00

011:810 2C4 00 00 00 20 00 80 21 8F

012:260 0B2 00 48 00 48 00 00

014:360 223 00 00 00 00 00 00 00 2D

016:420 224 00 00 00 00 00 00 00 00

020:510 O25 00 A2 00 00 00 00 00 CF

021:030 2C1 08 05 83 28 06 EC 00 75

022:500 0B0 00 48 00 48 00 00

024:540 0B2 00 48 00 48 00 00

029:220 2D0 00 00 08 00 10 00 00 F2

032:770 O25 00 A2 00 00 00 00 00 CF

034:770 0B0 00 48 00 48 00 00

035:370 2C4 00 00 00 20 00 80 21 8F

036:260 2D2 00

036:840 0B2 00 48 00 48 00 00

Real CAN
traffic on a
500 Kbps

car.

Real J1939 Traffic

CAN Summary

This gives a basic understanding of CAN.

From here you can go to:

High level protocols connect to CAN

J1939, CANopen, MilCAN, J2284, …

Now: a bit about tools….and then errors

and some handy hints…

Tools

Design, development and maintenance.

Hardware and software.

Cheap, average and high cost.

Vastly different capabilities.

Designed to save you time and money.

Low cost tools are alluring but….

Costs you time and money and worse….

Adverse to critical Time-To-Market.

Awkward, hard to use, hard to setup.

Limited info provided – no trigger or filters.

Some interesting tests might not happen.

Time is better to use for testing product.

Cheap Tools

Network Tools –

Bus Analyzers and CAN Oscilloscopes

 Development of network and diagnostics

 Sits on a bus and monitor.

 Can send and receive messages on bus.

 Save messages, trigger, filter, respond.

CAN Faults

Regular dual-wire CAN redundancy:

One CAN open or shorted to ground.

Note: ground must be connected for open.

But not to each other or both to ground.

Ground can be open.

or a ground loop can exist.

Error Frames

Any node see something wrong on the bus.

Makes bus dominant.

All nodes knows this is an error frame.

Sender stops transmitting.

Increments its Transmit Error Counter by 8.

If TEC < FF, resends message else busoff.

Others increment their Receive Error Counters.

Note: only a node can boot itself off the bus.

Error Counters

Two 8 bit counters in CAN controller.

Counts the errors.

Inc. & decrement.

Up by 8, down by 1

Can read as an
indication of bus health.

Busoff return: RESET
or 128 good messages
:its what you say.

TEC REC

Reset

96

127

255

Note: 96 is considered a significant error level

Bus Off

CAN Bit Timing

Each bit consists of a # of time quantum (tq).

TQs added and subtracted as clock syncs.

Tqs are set by designer in CAN controller chip.

See your datasheet for help.
1 bit time

1 time quantum (tq)

sample point

transmit point

Sync-

segment
Propagation

Time Segment

Phase

Buffer

Segment 1

Phase

Buffer

Segment 2

CAN Filters

Typical microcontroller

F
ilt

e
rs

Allow only selected messages through !

On ID and sometimes 1st byte of data.

This is why IDs are carefully chosen.

CAN Statistics

Periodic Auto bus rates about 6 – 7 %

GM periodic about 15 % @ 500 Kbps.

Getting higher and higher.

Design in some slack for expansion.

Tips & Hints

2 nodes: never send the same message.

Get a bus error or both think successful.

Use same # data bytes all the time.

Software is much simpler to debug and
maintain.

Never change the bus speed !

Beware of short bursts of high bus traffic.

Read TEC & REC to view state of your bus

If use a protocol – implement all of it !

Through data on the floor but take care of it.

more Tips & Hints

Don’t mix one protocol with another

J1939 and CANopen will crash…maybe…

Use defaults – don’t do anything “elegant”

 You don’t want to be the first to find that bug !

Use timeouts – don’t hang until RESET.

Don’t make timeouts too tight – sloppy is
better.

Select IDs with care for easy filtering.

Don’t fudge the bus. Fix it.

And a few more….

Design in some “elbow room”.

Reserve some IDs for expansion/bug fixes.

Take care of “Reserved Bits”.

Remember protocols are designed by
committees. Investigate odd things.

Watch out for the simple things…..

The End…for now...

See www.keil.com/can

…and look for my CAN Primer.

Versions for Luminary, NXP and ST.

 ISO 11898-1,-2-3-4 defines CAN further.

Testing CAN Physical layers:

www.dgtech.com/pdfs/techpapers/CIA_article.pdf

http://www.keil.com/can

