

CAN Primer

Updated Summer 2010

Robert Boys bob.boys@arm.com

Version 2.0

ARM

Agenda:

- What exactly is CAN ?
- Identifiers what they are.
- What does the data look like ?
- What the CAN wires look like.
- Example CAN circuits.
- Arbitration who gets priority.
- Errors and how to detect them !
- Some Tips and Hints....

Myths about CAN:

- Is not only for automotive applications !
- Can be found everywhere.
- Automation is one (CANopen, DeviceNet)
- Is easy to implement...no mystery anymore
- ...unless you use some tricky protocols.
- You can "roll your own" for simplicity.
- Can gateway to USB, Ethernet, RS232 and other networks to form larger systems.

Why Use CAN ?

- Electrically robust with built-in error and arbitration features. These are automatic !
- Differential pair reduces EMI in/out.
- Many controllers and parts available.
- Plenty of software and hardware tools.
- Really, really easy to add another node.
- Hard work is done by the CAN controller.
- Many chips have implemented CAN.
- Largest CAN network in world is believed to be the Vancouver Olympic sign.

What exactly is CAN ?

- CAN Controller Area Network The Bosch CAN spec includes:
- Some of the physical layer (wires).
- Message frame description.
- Attributes Peer-to-Peer network.
- Arbitration scheme multiple messages.
- Some error detection and handling.

The CAN spec does not include:

- Any high level addressing modes.
- Any message descriptions or groupings.
- Diagnostics or messages streams.
- Any acknowledgement a message reached its intended target.
- Bus Speed: see ISO 11898-2, J2284.
- The physical link you can use anything.
- People often include these items. Shouldn't !

- Is specified from ~10 Kbps to 1Mbps.
- Can't change speed dynamically...ever !
- 125, 250 & 500 Kbps common.
- Longer cable runs means slower frequency.
- I Mbps a bit hard to manage in a real system.

High Points of the CAN Bus

- Uses a Differential twisted pair of wires.
- The highest priority message gets thru.
- Uses non-destructive arbitration.
- The priority of message is its identifier.
- O has the highest priority. Always.
- No Master or Slave Peer to Peer.
- All nodes see all messages on network.
- except their own.....

Construction of a CAN Network

a,b = 120 Ω $\frac{1}{2}$ watt termination resistors.

Drops use the same twisted pair of wires as the backbone.

Example CAN Node

A real CAN circuit:

R12, R13 & C45 create "Split Termination" for extra noise immunity instead of one 120 ohm.

- Note: A Common Mode Choke can be used.
- TIP: Use USB cable to power Keil boards.

Three Flavours of CAN

The difference between these three is the CAN transceiver and normally the speed.

Differential Twisted Pair

- CAN transceiver converts single-ended Tx to a differential pair output.
- ALSO takes differential pair and converts back to Rx.
- Node sees in and out at same time.
- Interference coming in & out cancels out.
- Twisted pair and receiver ccts does this.

Recessive and Dominant Bits

- Recessive is 2.5 volts CAN Hi and Lo. Difference is 2.5 – 2.5 = 0 volts. Call this a "1"
- Dominant is CAN_Hi 3.5v CAN_Lo 1.5v. Difference is 3.5 – 1.5 = 2.0 volts. Call this a "0"

The important voltage is the difference between CAN Hi and Lo and not to ground.

Recessive and Dominant Bits

- Any node can pull Hi and Lo apart on the bus.No node can force Recessive.
- This means an idle bus has zero volts Hi & Lo and about 2.5 volts to ground.
- This is how arbitration works.
- A bus can sit idle for a hundred years and every node will see the first message sent.
- The clocks in CAN need to be good ones.

The Differential Signals

Bottom signals are algebraically subtracted to result in the top signal:

AR

A problem !!

Older system works OK!

Bit Stuffing

- Nodes need an active clock to stay in sync.
- Must come from the bus transitions.
- If no change for 5 bit times will add a bit.
- CAN frame is actually lengthened by this.
- CAN controllers add & remove stuffed bits.
- Invisible to the programmer.
- Only an oscilloscope will show this...and here is where a problem can surface !

Bit stuffing makes the frame look like it has jitter !

It does not....but it can be confusing.

A CAN Frame Decoded:

The Architecture for the Digital World[®]

Data Link: the frame.

CAN is a serial bus. 1 or 2 wires. (SW-CAN)
CAN 2.0 A Standard 11 bit identifiers – 2,048 ID's. 0 – 7FF
CAN 2.0 B Extended 29 bit identifiers – 536 million ID's.
0 – 1FFF FFFF

Both 11 and 29 bit can be used on the bus.

CAN controllers can easily sort them out.

A little more...

- 0 to 8 bytes of data per CAN frame.
- This can be changed dynamically.
- Bus length to 40 meters @ 1 Mbps, 1 meter drops. Slower = longer.
- Two 120 termination resistors needed at each end of the bus. (measure 60 ohms)

Standard and Extended CAN Frames

Designers need only fill in the RED lines !

SOF - Start of Frame SRR - Substitute Remote Request IDE - Identifier Extension RTR - Remote Transmission Request R0 - Reserved bit Extended Frame: SRR=1, IDE=1

R1 - Reserved bit DLC - Data Length Code CRC - Cyclic Redundancy Check DEL - Delimiter ACK - Acknowledgement bit

The Architecture for the Digital World[®]

CAN Programming Model

The Architecture for the Digital World[®]

Acknowledge: Newbie mistake # 1.

- Sender sets this Recessive.
- Someone has to assert this to dominant.
- Else: sender re-transmits again forever.
- So need at least one other CAN node.
- Is merely 2 µsec wide @ 500 Kbps.

A bug turned into a feature.....

- If bus gets trashed after sender finishes...
- But before others think is over...
- Bus fault occurs and message retransmitted.
- SO: don't increment or toggle a value !
- If you want a variable to be 64 say it in full.

The Architecture for the Digital World[®]

Priority Levels

- Message with highest priority gets thru.
- Lowest Identifier has priority.
- •000 beats 001, 123 beats 256. Always.
- Arbitration evaluated in real-time.
- Uses Recessive and Dominant bits.
- A node can (and must!) see itself and others on the bus in real time.
- Note: a node can't see its own ID and data.

- Illegal to have same identifier at same time.
- Possible a node will never get priority.
- CAN is not deterministic. TTCAN is though.
- Note: if 11 and 29 bit same identifier at the same time 11 bit wins arbitration.
- i.e. 11010101010 & (wins because IDE = 0) 110101010101010100101001101000

What can you put into the ID?

Anything at all ! CAN does not specify. IDs will get on bus according to priority. Your System Designer will not agree ! Normally: addresses of modules or devices. Or tasks....Request or Response Acknowledge (don't confuse with ACK) ID values are carefully selected for filtering.

What can put into Data ?

- Anything at all ! CAN does not specify.
- Will not be prioritized by CAN controller.
- Your System Designer will not agree !
- Normally: Services, Modes, data (signals).
- Data transfers etc.
- Multi-byte data control bytes. i.e. # bytes sent
- Number of data bytes can be changed.

Diagnostics and Standard Traffic

Standard Mode: ordinary data from ordinary vehicle operation.

- Nodes are operating normally.

Diagnostic Mode: Nodes are put into a special mode for queries by a scantool.
 Is problem or inquiry related.

Diagnostics handle "Limp Home Mode"
Not CAN spec – higher layers

Polled and Periodic Messages

- Periodic Messages: messages broadcast continually on the bus at certain rate.
- Polled Messages: messages provided due to a query by a node or diagnostic tool.
- Are created by high level not CAN.
- Such as J1939 and proprietary systems.

Real CAN traffic on a 500 Kbps car.

000:000	0B2	00	4 8	00	4 8	00	00		
004:510	2D2	00							
008:240	025	00	A2	00	00	00	00	00	CF
010:240	0в0	00	48	00	48	00	00		
011:810	2C4	00	00	00	20	00	80	21	8F
012:260	0в2	00	48	00	48	00	00		
014:360	223	00	00	00	00	00	00	00	2D
016:420	224	00	00	00	00	00	00	00	00
020:510	025	00	A2	00	00	00	00	00	CF
021:030	2C1	08	05	83	28	06	EC	00	75
022:500	0в0	00	48	00	48	00	00		
024:540	0в2	00	48	00	48	00	00		
029:220	2D0	00	00	8 0	00	10	00	00	F2
032:770	025	00	A2	00	00	00	00	00	CF
034:770	0в0	00	48	00	48	00	00		
035:370	2C4	00	00	00	20	00	80	21	8F
036:260	2D2	00							
036:840	0B2	00	48	00	48	00	00		

Real J1939 Traffic

🦻 Scrolli	ng Monitor	- Configur	ation = bro	se.her					X
Line No	TimeStam	Channel	Frame Id	Header Details	Frame Acronym	Protocol	Data	Rx/Tx	•
3171	00:07:28	CH#B	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3172	00:07:28	CH#A	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3173	00:07:28	CH#B	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3174	00:07:28	CH#A	0CF00400	P/T = 3 : PGN = 00F004 : Src Addr = 00	EEC1_00F004	J1939	FE 7D 7D 00 00 00 FF FF	Rx	
3175	00:07:28	CH#B	0CF00400	P/T = 3 : PGN = 00F004 : Src Addr = 00	EEC1_00F004	J1939	FE 7D 7D 00 00 00 FF FF	Rx	
3176	00:07:28	CH#A	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3177	00:07:28	CH#B	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3178	00:07:28	CH#A	18FEF000	P/T = 6 : PGN = 00FEF0 : Src Addr = 00	PTO_00FEF0	J1939	FF FF FF 00 00 F0 CC FF	Rx	
3179	00:07:28	CH#B	18FEF000	P/T = 6 : PGN = 00FEF0 : Src Addr = 00	PTO_00FEF0	J1939	FF FF FF 00 00 F0 CC FF	Rx	
3180	00:07:28	CH#A	18F0000F	P/T = 6 : PGN = 00F000 : Src Addr = 0F	18F0000F	J1939	C0 7D FF FF 0F FF FF FF	Rx	
3181	00:07:28	CH#B	18F0000F	P/T = 6 : PGN = 00F000 : Src Addr = 0F	18F0000F	J1939	C0 7D FF FF 0F FF FF FF	Rx	
3182	00:07:28	CH#A	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3183	00:07:28	CH#B	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3184	00:07:28	CH#A	0CF00400	P/T = 3 : PGN = 00F004 : Src Addr = 00	EEC1_00F004	J1939	FE 7D 7D 00 00 00 FF FF	Rx	
3185	00:07:28	CH#B	0CF00400	P/T = 3 : PGN = 00F004 : Src Addr = 00	EEC1_00F004	J1939	FE 7D 7D 00 00 00 FF FF	Rx	
3186	00:07:28	CH#A	0CF00300	P/T = 3 : PGN = 00F003 : Src Addr = 00	EEC2_00F003	J1939	F1 00 00 FF FF FF FF FF	Rx	
3187	00:07:28	CH#B	0CF00300	P/T = 3 : PGN = 00F003 : Src Addr = 00	EEC2_00F003	J1939	F1 00 00 FF FF FF FF FF	Rx	
3188	00:07:28	CH#A	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3189	00:07:28	CH#B	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3190	00:07:28	CH#A	18FEF 100	P/T = 6 : PGN = 00FEF1 : Src Addr = 00	CCVS_00FEF1	J1939	FF 00 00 00 00 60 00 C0	Rx	
3191	00:07:28	CH#B	18FEF 100	P/T = 6 : PGN = 00FEF1 : Src Addr = 00	CCVS_00FEF1	J1939	FF 00 00 00 00 60 00 C0	Rx	
3192	00:07:28	CH#A	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	
3193	00:07:28	CH#B	0CF00203	P/T = 3 : PGN = 00F002 : Src Addr = 03	0CF00203	J1939	CC 00 00 FF F0 FF FF FF	Rx	+

The Architecture for the Digital World®

ARM

CAN Summary

 This gives a basic understanding of CAN.
 From here you can go to: High level protocols connect to CAN J1939, CANopen, MilCAN, J2284, ...
 Now: a bit about tools....and then errors and some handy hints...

Tools

- Design, development and maintenance.
- Hardware and software.
- Cheap, average and high cost.
- Vastly different capabilities.
- Designed to save you time and money.
- Low cost tools are alluring but....

- Costs you time and money and worse....
- Adverse to critical Time-To-Market.
- Awkward, hard to use, hard to setup.
- Limited info provided no trigger or filters.
- Some interesting tests might not happen.
- Time is better to use for testing product.

Network Tools –

Bus Analyzers and CAN Oscilloscopes

- Development of network and diagnostics
- Sits on a bus and monitor.
- Can send and receive messages on bus.
- Save messages, trigger, filter, respond.

CAN Faults

Regular dual-wire CAN redundancy:

- One CAN open or shorted to ground.
 - Note: ground must be connected for open.
- But not to each other or both to ground.
- Ground can be open.
- or a ground loop can exist.

Error Frames

- Any node see something wrong on the bus.Makes bus dominant.
- All nodes knows this is an error frame.
- Sender stops transmitting.
- Increments its Transmit Error Counter by 8.
- If TEC < FF, resends message else busoff.</p>
- Others increment their Receive Error Counters.
- Note: only a node can boot itself off the bus.

Error Counters

- Two 8 bit counters in CAN controller.
- Counts the errors.
- Inc. & decrement.
- Up by 8, down by 1
- Can read as an indication of bus health.
- Busoff return: RESET or 128 good messages :its what you say.

CAN Bit Timing

Each bit consists of a # of time quantum (tq).
TQs added and subtracted as clock syncs.
Tqs are set by designer in CAN controller chip.
See your datasheet for help.

CAN Filters

Allow only selected messages through !
On ID and sometimes 1st byte of data.
This is why IDs are carefully chosen.

CAN Statistics

- Periodic Auto bus rates about 6 7 %
- GM periodic about 15 % @ 500 Kbps.
- Getting higher and higher.
- Design in some slack for expansion.

Tips & Hints

- 2 nodes: never send the same message.
 - Get a bus error or both think successful.
- Use same # data bytes all the time.
 - Software is much simpler to debug and maintain.
- Never change the bus speed !
- Beware of short bursts of high bus traffic.
- Read TEC & REC to view state of your bus
- If use a protocol implement all of it !
- Through data on the floor but take care of it.

more Tips & Hints

- Don't mix one protocol with another
 J1939 and CANopen will crash...maybe...
 Use defaults don't do anything "elegant"
 You don't want to be the first to find that bug !
 Use timeouts don't hang until RESET.
- Don't make timeouts too tight sloppy is better.
- Select IDs with care for easy filtering.
- Don't fudge the bus. Fix it.

- Design in some "elbow room".
- Reserve some IDs for expansion/bug fixes.
- Take care of "Reserved Bits".
- Remember protocols are designed by committees. Investigate odd things.
- Watch out for the simple things.....

- See <u>www.keil.com/can</u>
 - ...and look for my CAN Primer.
- Versions for Luminary, NXP and ST.
- ISO 11898-1,-2-3-4 defines CAN further.
- Testing CAN Physical layers: www.dgtech.com/pdfs/techpapers/CIA_article.pdf

