UPAMDTM/P1823TM
Potential Goals

Bob Davis
UPAMDTM acting Chair
UPAMD™ Goals

• General Goals
• Connector Goals
 – Connector Options
• Communications Goals
 – Communications Options
• Power Goals
 – Power Options
UPAMD™ General Goals

• Life expectancy of 10 years
• First adapter must work with last device and last adapter must work with first device, possibly with reduced capability.
 • Adapter<->Mobile Device communications required for safety.
 • Continuous communications growth to support growth of UPAMD.
• Must support non-battery powered devices
• Connector must not mate with any current designs – product Safety issue
• Consider future mobile device design options
 – Smaller profiles, headed for 10mm now 5mm later?
 – Different shapes: may not be on edge
• Must support changing battery storage technology.
 – Multiple battery technologies currently used and need to be considered.
 – Consider future power storage technologies
• Should UPAMD consider Adapter supply side issues
 – (input voltage/frequency safety standards, country specific issues?) – suggested as not being needed at this meeting.
UPAMD™ Connector Goals

- Not compatible with any existing connector design
 - Equipment safety - Prevent damage
- Easy disconnect to prevent tripping – safety issue
 - What disconnect force as a function of angle?
- Capable of 10W to 130W
 - Contacts rated for currents to 9A?. Voltage Rated SELV?.
- Floating electrical connection, electrically isolated – Safety
 - No shock hazard under any conditions
- Very high connect – disconnect cycle capability – Many year usage
- Aesthetically pleasing
- Support lower profile devices
 - 10mm or less? iPad=13.4mm (to start with) 5mm goal?
 - other shapes and possibly flat surface connect
- Retention mechanism - Magnetic or Mechanical
 - Magnetic possibly good choice, Apple Patent 7,311,526 Needs LOA.
 - Several clip possibilities exist. New Ideas clearly welcome
- Positive and Negative connection with communication AC coupled
 - Assume multiple contacts for reliability and current sharing?
- Blind mate friendly - it possible
 - think of mating adapters and device alignment by feel in the dark
 - Easy docking station or charging station
UPAMD™ Connector Options

- **Barrel Connector – TC100 proposed style**
 - Advantages
 - Exists, History, IEC 61076-2-102 spec, cost?
 - Disadvantages
 - Big, not Aesthetically pleasing, No sources found, Safety trip hazard, moisture seal

- **Spring Loaded Contact Style – Adapter side**
 - Advantages
 - Small Footprint, flat contact surface, good usage models, low cost to device, possible Flush mount on device, aesthetically pleasing, contact life >1,000,000 operations
 - Disadvantages
 - Latching mechanism, require pressure 300-500+ grams

- **Edge Connector**
 - Advantage
 - Direct extension of pc board, low cost edge connector
 - Disadvantages
 - Direct access to pcb, moisture seal, contact life

- **Multi-pin Connector**
 - Advantages
 - Separate power from control on different wires
 - Disadvantages
 - Cost, single orientation.

- **Magnetic Induction coupling**
 - Advantages
 - No contact coupling, no penetration of casing, cleanest design.
 - Disadvantages
 - Size of coil, position for good coupling. Field effect on surrounding parts at 130W, power transfer efficiency, modulation for communications. Interfere with other radio traffic from device.
UPAMD™ Communication Goals

• Use existing standards if possible.
 – CAN bus, RS422/RS485, USB, others?
• Differential signal communications
 – AC coupled on positive and negative power leads
 – Robust system – EMI, EMC, ESD
• Other communication schema?
• No Communications – No Power
 – Connector safe when disconnected – only communications signal present
 – No shock hazard, no possible damage to adapter
• Communications messages needed (starting thoughts)
 • “Any adapter present?” (probably connector pin)
 • “Who are you?”: To adapter
 • “I am ___ and my capability is ___”: to device
 • “Supply power XX Volts YY mA max”: to adapter
 • “Ready” or “not capable”: to device
 • “Start power”: to adapter
 • “Status?”: to adapter
 • “Status is ____”: to device
 • “STOP power supply”: to adapter
UPAMDTM Communications Options

• Signaling
 – Extra wires with transformer coupling
 – Differential signals AC coupled to positive and negative power leads

• Protocols
 – CAN Bus
 • Advantages
 – Known protocol, very flexible, designed for control structures
 – Most small embedded controllers have it built in
 – High growth potential
 • Disadvantages
 – Less well known
 – UART – RS422/RS485
 • Advantages
 – Low cost. Easy implementation, can support needed communications.
 • Disadvantages
 – Needs UART from host
 – Protocol development needed.
 – USB
 • Advantages
 – Ubiquitous, well known, many ports available.
 • Disadvantages
 – USB certification for modified protocols
 – Requires cooperation with USB-IF committee
 – Operation over differential power lines needs to be verified.
 – Ethernet – Ethernet over-power-line method
 • Advantages
 – Proven to work, also can connect for other communications
 • Disadvantages
 – Needs additional Ethernet port
 – Most expensive.
 – I2C/SMB; SPI; 1-Wire – probably difficult to implement
 – X-10 – not designed for DC
UPAMDTM Power Goals

• One connector fits all power needs
• Power Range 10W – 130W
• New Connector – Not inter-mateable with existing connectors – Safety issue for equipment
• Smart interconnect.
 – No power enabled without communications to adapter.
UPAMDTM Power Options

• 10 year Life Expectancy
 – Think ahead
 – Consider both as a battery charging and as a fixed power source

• Adjustable power Source
 – Adapter sets output voltage based on communications with device
 – Adapter sets maximum current limit based on communications with device
 – Good match for each user
 – Specify range from 5V to 45V. Power limited by connector current capacity.
 • Choice of 9A rated 0.050 spring loaded contacts with 2 per rail provides good margin 130W above 15V.
 • Possible options 5V, 12V, 13.75V, 20V, 24V, 36V, 42V, 48V.
 • Possible current limits: 1A, 3A, 5A, 10A. Or at specified mA rating 0-10000.

• Well regulated Fixed voltage
 – Tight regulation +/- 1-5% DC @ fixed voltage
 • consider cable losses and feedback loop
 • Battery chemistry driven?
 • No common voltage used.
 – 12V, 13.75V, 15V, 19V, 19.5V, 24V
 – Battery chemistry – NiCad, NiMH, Li-ion, Li-PO other exotics. New technology will probably be different
 – All devices seem to have internal regulators.
 • Battery voltages – laptops
 – 11.1, 10.8, 14.8, 9.6, 14.4, 12, …

• Semi-regulated bulk power
 – Bulk power ie 24V +/- 10% (6A) or 45V +/- 10% (3A) @ 130W
 • Power delivery vehicle with point of use regulation
 • Regulator efficiency works
 • Lower Cost
 • Smaller wire size needed
 • Longer power cable allowed.
 • Higher voltage more efficient transfer.
 • Higher voltage smaller contacts.
Backup Slides