UPAMD[™]/P1823[™] Potential Goals

Bob Davis
UPAMD™ acting Chair

UPAMD™ Goals

- General Goals
- Connector Goals
 - Connector Options
- Communications Goals
 - Communications Options
- Power Goals
 - Power Options

UPAMD™ General Goals

- Life expectancy of 10 years
- First adapter must work with last device and last adapter must work with first device, possibly with reduced capability.
 - Adapter<->Mobile Device communications required for safety.
 - Continuous communications growth to support growth of UPAMD.
- Must support non-battery powered devices
- Connector must not mate with any current designs product Safety issue
- Consider future mobile device design options
 - Smaller profiles, headed for 10mm now 5mm later?
 - Different shapes: may not be on edge
- Must support changing battery storage technology.
 - Multiple battery technologies currently used and need to be considered.
 - Consider future power storage technologies
- Should UPAMD consider Adapter supply side issues
 - (input voltage/frequency safety standards, country specific issues?) suggested as not being needed at this meeting.

UPAMD™ Connector Goals

- Not compatible with any existing connector design
 - Equipment safety Prevent damage
- Easy disconnect to prevent tripping safety issue
 - What disconnect force as a function of angle?
- Capable of 10W to 130W
 - Contacts rated for currents to 9A?. Voltage Rated SELV?.
- Floating electrical connection, electrically isolated Safety
 - No shock hazard under any conditions
- Very high connect disconnect cycle capability Many year usage
- Aesthetically pleasing
- Support lower profile devices
 - 10mm or less? iPad=13.4mm (to start with) 5mm goal?
 - other shapes and possibly flat surface connect
- Retention mechanism Magnetic or Mechanical
 - Magnetic possibly good choice, Apple Patent 7,311,526 Needs LOA.
 - Several clip possibilities exist. New Ideas clearly welcome
- Positive and Negative connection with communication AC coupled
 - Assume multiple contacts for reliability and current sharing?
- Blind mate friendly it possible
 - think of mating adapters and device alignment by feel in the dark
 - Easy docking station or charging station

UPAMD™ Connector Options

- Barrel Connector TC100 proposed style
 - Advantages
 - Exists, History, IEC 61076-2-102 spec, cost?
 - Disadvantages
 - Big, not Aesthetically pleasing, No sources found, Safety trip hazard, moisture seal
- Spring Loaded Contact Style Adapter side
- AP CP FP KP JP HP GP BP DP IP 1.4(-0.1) 6.5(+0.1) 0.5(-0.3) 1.5(++ 2.5(++ 8.5 0.3) 8.5(+- 6.0(+0.1) 4.3(+0.2) 0.1)

3 2 3 4 4 1 3 2 4 1 1 2 3				
AJ	CJ	HJ	DJ	MJ
1.45(+0.1)	7.0(+0.15)	8.0(- 0.2)	4(-0.2)	1.5(+1.5,- 1.0)

- Advantages
 - Small Footprint, flat contact surface, good usage models, low cost to device, possible Flush mount on device, aesthetically pleasing, contact life >1,000,000 operations
- Disadvantages
 - Latching mechanism, require pressure 300-500+ grams
- Edge Connector
 - Advantage
 - Direct extension of pc board, low cost edge connector
 - Disadvantages
 - Direct access to pcb, moisture seal, contact life
- Multi-pin Connector
 - Advantages
 - Separate power from control on different wires
 - Disadvantages
 - Cost, single orientation.
- Magnetic Induction coupling
 - Advantages
 - No contact coupling, no penetration of casing, cleanest design.
 - Disadvantages
 - Size of coil, position for good coupling. Field effect on surrounding parts at 130W, power transfer efficiency, modulation for communications. Interfere with other radio traffic from device.

UPAMD™ Communication Goals

- Use existing standards if possible.
 - CAN bus, RS422/RS485, USB, others?
- Differential signal communications
 - AC coupled on positive and negative power leads
 - Robust system EMI, EMC, ESD
- Other communication schema?
- No Communications No Power
 - Connector safe when disconnected only communications signal present
 - No shock hazard, no possible damage to adapter
- Communications messages needed (starting thoughts)
 - "Any adapter present?" (probably connector pin)
 - "Who are you?": To adapter
 - "I am ___and my capability is ___": to device
 - "Supply power XX Volts YY mA max": to adapter
 - "Ready" or "not capable": to device
 - "Start power": to adapter
 - "Status?": to adapter
 - "Status is ____": to device
 - "STOP power supply": to adapter

UPAMD™ Communications Options

- Signaling
 - Extra wires with transformer coupling
 - Differential signals AC coupled to positive and negative power leads
- Protocols
 - CAN Bus
 - Advantages
 - Known protocol, very flexible, designed for control structures
 - Most small embedded controllers have it builtin
 - High growth potential
 - Disadvantages
 - Less well known
 - UART RS422/RS485
 - Advantages
 - Low cost. Easy implementation, can support needed communications.
 - Disadvantages
 - Needs UART from host
 - Protocol development needed.
 - USB
 - Advantages
 - Ubiquitous, well known, many ports available.
 - Disadvantages
 - USB certification for modified protocols
 - Requires cooperation with USB-IF committee
 - Operation over differential power lines needs to be verified.
 - Ethernet Ethernet over-power-line method
 - Advantages
 - Proven to work, also can connect for other communications
 - Disadvantages
 - Needs additional Ethernet port
 - Most expensive.
 - I2C/SMB; SPI; 1-Wire probably difficult to implement
 - X-10 not designed for DC

UPAMD™ Power Goals

- One connector fits all power needs
- Power Range 10W 130W
- New Connector Not inter-mateable with existing connectors – Safety issue for equipment
- Smart interconnect.
 - No power enabled without communications to adapter.

UPAMD™ Power Options

- 10 year Life Expectancy
 - Think ahead
 - Consider both as a battery charging and as a fixed power source
- Adjustable power Source
 - Adapter sets output voltage based on communications with device
 - Adapter sets maximum current limit based on communications with device
 - Good match for each user
 - Specify range from 5V to 45V. Power limited by connector current capacity.
 - Choice of 9A rated 0.050 spring loaded contacts with 2 per rail provides good margin 130W above 15V.
 - Possible options 5V, 12V, 13.75V, 20V, 24V, 36V, 42V, 48V.
 - Possible current limits: 1A, 3A, 5A, 10A. Or at specified mA rating 0-10000.
- Well regulated Fixed voltage
 - Tight regulation +/- 1-5% DC @ fixed voltage
 - consider cable losses and feedback loop
 - Battery chemistry driven?
 - No common voltage used.
 - 12V, 13.75V, 15V, 19V, 19.5V, 24V
 - Battery chemistry NiCad, NiMH, Li-ion, Li-PO other exotics. New technology will probably be different
 - All devices seem to have internal regulators.
 - Battery voltages laptops
 - 11.1,10.8, 14.8, 9.6, 14.4, 12,
- Semi-regulated bulk power
 - Bulk power ie 24V +/- 10 % (6A) or 45V +/- 10% (3A) @ 130W
 - Power delivery vehicle with point of use regulation
 - · Regulator efficiency works
 - Lower Cost
 - Smaller wire size needed
 - Longer power cable allowed.
 - Higher voltage more efficient transfer.
 - Higher voltage smaller contacts.

Backup Slides