UPAMDTM/P1823TM
Potential Goals
Updated 7/10/10

Reflector input Update/Bob Davis
UPAMDTM acting Chair
UPAMD™ Goals

• General Goals
• Connector Goals
 – Connector Options
• Communications Goals
 – Communications Options
• Power Goals
 – Power Options
UPAMD™ General Goals

• Life expectancy of 10 years, hopefully more
• Same connector for All device and adapter connections
• Power range >10W – 130W delivered power to device and is brand, model, and year agnostic
• First adapter must work with last device and last adapter with first device. Standard Compatibility.
 • Adapter<->Mobile Device communications required for higher power safety.
 • Continuous communications growth to support growth of UPAMD capability.
• Must support regular non-battery and battery powered devices
 – Basic power delivery mechanism
 – Make independent of rapidly changing technology
 – Multiple battery technologies currently used – no common adapter or battery voltage
 – Consider isolation to meet medical power needs
• Standard designed to support Certification testing of adapter and device
• Consider future mobile device design options
 – Smaller profiles, headed for 10mm to 5mm? Different shape devices, non-edge usage
• No DANGEROUS power without communications.
• Device may be a source or sink of power
 – To supply power other devices beyond the USB power range of <10W.
 – Able to share power for mission critical or business critical applications
• Connector must not mate with any current designs – product Safety issue – no confusion
• Apply KISS principle – Keep It Simple Stupid within the other goals.
• Environmentally friendly to eventual disposal
UPAMDM™ Connector Goals

• Capable of >10W to 130W No conflict with USB based 5V power delivery systems
 – Contacts rated for currents to 9A?. Voltage Rated SELV?.
• Not compatible with any existing connector design
 – Equipment safety - Prevent damage – new starting point
• Easy disconnect AND cable retention capability in same common connector design
 – Easy disconnect to prevent tripping in office/home environment – health and safety issue
 – Strong retention capability for rugged high acceleration environments - car/boat/airplane/mission-critical
• Floating electrical connection, electrically isolated – Safety
 – No shock hazard under any conditions - meet medical isolation requirements
• Very high connect – disconnect life cycle capability – Many year usage
• Support lower profile devices
 – 10mm or less? iPad=13.4mm (to start with) 5mm or less goal
 – other shapes and possibly flat surface connect
• Watertight or Water resistant
 – To keep coffee, tea, rain, adult beverages, out of the connection.
 – Seal on cable side of connection for easy replacement of cable or seal.
• Positive and Negative connection with communication AC coupled
 – Assume redundant contacts for reliability and current sharing?
• Aesthetically pleasing
• Retention mechanism - Magnetic or Mechanical
 – Several clip possibilities exist. New Ideas clearly welcome
• Blind mate friendly - it possible
 – think of mating adapters and device alignment by feel in the dark
 – Easy docking station or charging station operation
UPAMDM™ Connector Goals (Continued)

• Separate Power Cable capability
 – Same connector on each end – adapter and device
 – Buy cable to meet length need
 – Reduce adapter cost – consumer buys UPAMD cable(s) to meet needs
 – Possible quick interface to join two cables
 – One adapter could support multiple cables/devices
 • Cut down total number of adapters for desk top use. Each socket on adapter independent.

• Support device to device power charging or power sharing
 – Support for mission-critical and business-critical applications
 – Borrow power needed to watch the end of the movie
 – Software only modification to protocol
 – Power sourcing optional for device

• User replaceable power cable
 – Most damage is to connectors and cables, replace as needed
 – Change cable to adjust length needs
 – Carry/borrow backup cable
UPAMD™ Connector Options

- **Barrel Connector – TC100 proposal**
 - **Advantages**
 - Exists, History, IEC 61076-2-102 spec, cost?
 - **Disadvantages**
 - Big, No sources found, Safety trip hazard, connector damage history

- **Spring Loaded Contact Style – Cable side**
 - **Advantages**
 - Small Footprint, flat device contact surface, good usage models, low cost to device, possible Flush mount on device, aesthetically pleasing, contact life >1,000,000 operations, easy connector to connector adapter for extension cable.
 - Can be symmetrical on cable and device/adapter
 - 42mil dia pin = 2Amp cont. 50mil dia pin = 9Amp cont.
 - **Disadvantages**
 - Latching/retention mechanism, required to overcome spring pressure 300-500+ grams

- **Edge Connector**
 - **Advantage**
 - Direct extension of pc board, low cost edge connector
 - **Disadvantages**
 - Direct access to pcb, moisture seal, contact life

- **Multi-pin Connector**
 - **Advantages**
 - Separate power from control on different wires
 - **Disadvantages**
 - Cost, single orientation, connector life cycle count

- **Magnetic Induction coupling**
 - **Advantages**
 - No contact coupling, no penetration of casing, cleanest design.
 - **Disadvantages**
 - Size of coil, position for good coupling. Field effect on surrounding parts at 130W, power transfer efficiency, modulation for communications. Interference with other radio traffic from device.

Device has flat contact – cable "Pogo" style spring-loaded pin
Pin 1 and 5 Negative connection
Pin 2 and 4 Positive connection
Pin 3 charge control – shorter pin = last make
Communication AC coupled to positive and negative wires

10 July 2010

UPAMDP-1823 Goals - Bob Davis
UPAMD™ Communication Goals

- Use existing standards if possible.
 - CAN bus, RS422/RS485, USB, others?

- Differential signal communications
 - AC coupled on positive and negative power leads
 - Robust system – EMI, EMC, ESD

- Other communications schema?

- Possible symmetrical operation
 - Allow device to source other devices
 - Allow power sharing to keep critical devices working in emergencies -- adaptive UPS
 - Software controlled

- No communications = how much power?
 - Device startup for regular non-battery powered devices
 - Provide nominal 12-14V at <0.5A until communications established
 - Device startup for low battery
 - Must assume device protects itself at low end of battery to retain restart capability.
 - Restarting safety circuits is very battery and safety circuit specific. Battery failures require new battery/external charge
 - No shock hazard, power source protects self

- Communications messages needed (starting thoughts -- extend for symmetrical operation)
 - “Any adapter present?” (probably connector pin)
 - “Who are you?”: To adapter or other device/source
 - “I am ___and my capability is ___ max available power is ___ watt/hours”: to device/load
 - “Supply power XX Volts YY mA max”: to adapter/source
 - “Ready” or “not capable” : to device/load
 - “Start power”: to adapter/source
 - “Status?”: to adapter/source
 - “Status is ____”: to device/load
 - “STOP power supply”: to adapter/source
UPAMD™ Communications Options

• Signaling
 – Extra wires with transformer/capacitive coupling for isolation – Ethernet/LVDS style
 – Differential signals AC coupled to positive and negative power leads

• Protocols
 – CAN Bus
 • Advantages
 – Known protocol, very flexible, designed for control structures
 – Most small embedded controllers have it built-in
 – High growth potential
 – Used in industrial and vehicular control systems – Noise issues well addressed
 • Disadvantages
 – Less well known
 – UART – RS422/RS485
 • Advantages
 – Low cost. Easy implementation, can support needed communications.
 • Disadvantages
 – Needs UART from host
 – Protocol development needed.
 – USB
 • Advantages
 – Ubiquitous, well known, many ports available.
 • Disadvantages
 – USB certification for modified protocols
 – Requires cooperation with USB-IF committee
 – Operation over differential power lines needs to be verified.
 – Ethernet – Ethernet over power-line method (P1901)
 • Advantages
 – Proven to work, also can connect for other communications
 • Disadvantages
 – Needs additional Ethernet port
 – Most expensive.
 – I2C/SMB; SPI; 1-Wire – probably difficult to implement and noise sensitive
 – X-10 – not designed for DC – other pulse derived communications possible.
UPAMDM Power Goals

• One connector meets all power needs
• Power Range >10W – 130W
• New Connector – Not inter-mateable with existing connectors – Safety issue for equipment and people
• Positive rail and Negative rail
• Floating connection, not grounded at adapter
 – Isolation (leakage) sufficient for medical applications?
• Device to Device to share power if needed
 – Possibly support powering one device from another
 • Higher power version of USB power option with smart control
 • Power sharing in mission and business critical situations.
• Smart interconnect.
 – Higher power enabled through communications between devices
• Regular non-battery and dead battery devices need starting power?
 – Supply 12-14V at <0.5A without communications for startup
 – Higher power requires communications and software control
UPAMDTM Power Options

• 10 year Life Expectancy
 – Think ahead – All devices will immediately transform input power into internally needed voltages based on technology used.
 – Consider both as a fixed power source and as battery charging source - basically power transfer

• Adjustable power Source
 – Adapter/source sets output voltage based on communications with device/load and its capabilities
 – Adapter/source sets maximum current limit based on communications with device/load and its capabilities
 – Good match for each user
 – May need starting voltage such as 12-14V @ <0.5A for starting
 – Specify range from 12V to 45V. Power limited by connector current capacity.
 • Use of 9A rated 0.050 spring loaded contacts with 2 per rail provides good margin to 130W above 15V.
 • Possible options 12-14V, 20V, 24V, 36V, 42V, 48V. Power precision +/- 10%?
 • Possible current limits: 1A, 3A, 5A, 10A. Or at specified mA rating 0-10000.

• Semi-regulated bulk power
 – Bulk power ie 24V +/- 10-15% (6+A) or 45V +/- 10-15% (3A) @ 130W
 • Power delivery vehicle with point of use regulation
 • Regulator efficiency works
 • Lower Cost
 • Smaller wire size needed
 • Longer power cable allowed.
 • Higher voltage more efficient transfer.
 • Higher voltage smaller contacts.

• Well regulated Fixed voltage
 – Tight regulation +/- 5% DC @ fixed voltage
 • consider cable losses and feedback loop – more expensive
 • Battery chemistry driven voltage
 • No common voltage used.
 – 12V, 13.75V, 15V, 18.5, 19V, 19.5V, 24V now with some up to 48V SELV limited
 – Battery chemistry – NiCad, NiMH, Li-ion, Li-PO other exotics. New technology will probably be different
 – All devices seem to have internal regulators.
 • Battery voltages – laptops
 – 11.1, 10.8, 14.8, 9.6, 14.4, 12,......
Backup Slides