Universal Power Adapter for Mobile Devices

IEEE Project 1823

Portable Power Delivery Convergence

Overview and Status

Bob Davis
UPAMD/P1823 Chair
12 May 2012
UPAMDP1823 Purpose

- The UPAMD standard creates a common interconnect for power delivery in the 10W to 240W power range to portable and fixed devices. This standard supports more universal use and reuse of power adapters replacing brand specific and model specific power adapters. The UPAMD adapter system may be usable in portable computing and entertainment systems, security, household and office equipment within the power range. Universality and reuse are among the primary driving factors. Communications may support the adaption of the powered device performance to the power available.
IEEE Universal Power Adapter Project

- P1823, IEEE Draft Standard for Universal Power Adapter for Mobile Devices (UPAMMD)

 - January 2010: IEEE Study Group formed
 - July 2010: Working Group procedures adopted
 - Conformity/testing opportunities under discussion
 - June 2010: IEEE Project Approval Request approved
 - July 2010: Formal Meeting Started
 - WG meetings every 2 weeks; could be close to Sponsor ballot by Mid-Year 2012

- Project initiated by industry
- 151 subscribers to project reflector (6 March 2012)
- Estimated 95% worldwide support (ODM & OEM)
- Main Working Group plus 4 Sub-committees every 2 weeks
- Open Meetings via Teleconference and WebEx
IEEE P1823: UPAMD Goals

- Life expectancy minimum of **10 years**, hopefully much more
- Same connector for ALL device and adapter connections
- Power range **10 W<UPAMD<130 W** delivered to device; is brand, model, and year agnostic (increased by committee to <240W Maximum)
- First adapter must work with last device designed and last adapter with first device designed. Standard compatibility.
 - Adapter<->Mobile Device communications required for higher power safety
 - Continuous communications growth to support growth of UPAMD capability
- Must support devices with, and with-out, internal battery power.
 - Basic power delivery mechanism – EPS (External Power Supply)
 - Make independent of rapidly changing technology
- Standard designed to support **Certification** testing of adapter and device
- Connector design to consider future mobile device design options
 - Smaller profiles, headed for 10mm to 5mm? Different shape devices, non-edge usage
- No DANGEROUS power without communications
 - Maximum energy at cable connect and disconnect < 15uJ
 - Maximum exposed power on unconnected power source connector is <500 uW.
- Any Device may be capable of being a source or sink of power
 - Able to share power for mission critical or business critical applications
- **Connector must not mate with any current designs**—product safety issue—no confusion
- Environmentally friendly to eventual disposal
IEEE P1823: UPAMD Goals

Connector
- Not compatible w/existing designs
- Easy disconnect plus High Retention
- Floating electrical connection
- Very high connect cycles
- Support low-profile devices

Communication
- 3.3V CAN Bus
- Communications over Twisted pair wires
- No communications Power < 20W
- No Connection = No Power
- Flexible, extensible Communications messages defined

Power
- 1 connector fits all power needs
- Power range: 10–<240 Watt – Non-Battery and Battery devices
- Device to Device power sharing possible
- Smart interconnect
UPAMD/1823 Potential Topologies

Power Source

UPAMD/1823 Adapter
1 or more Outputs 10->240W each output

UPAMD Connector

Devices (loads)

Mission/Business Critical Computer
Low-on-Power

Available Computer
With extra Power

UPAMD Cable

Power Flow

Simple UPAMD/1823 System

AC in
UPAMD/1823 Adapter
DP/USB SV Power

UPAMD Cable

LED Lamp 30W

Main Laptop

Monitors 5W

DVD Player

Audio 10W

Printer/Scan/Fax/Copy 50W

Storage Sub-System

UPAMD/1823

Docking Station or Expansion Box

Several Outputs Total output = <Total input power

USB power ports shown are for reference only and are not part of the UPAMD Standard

Uninterruptable Power Systems (UPS) shown are for reference only and are not part of the UPAMD Standard
Power Specification (current)

- **Power Range** - >10W to <240W
 - >10 W to 130W at default 21V power at source
 - 130W power is delivered at 21 V and 6.5A.
 - Connector power pin current specification is 9 Amps each (redundant connections)
 - Sink (user) expects not less than 20V at input
 - Up to 240W with extended Voltage options
 - Sink may request higher voltage up to 60V iff source is capable of higher voltage
 - Power levels change over time based on power available and device requirements

- **Mute – Non-Communicating device**
 - Have low value termination for easy identification
 - Maximum power supplied is 21V with 1 Amp limit
 - Lower power requirements may use different termination - 21V with lower current

- **Communications Power**
 - 12V nominal (10-14V) current limited to 25mA (300mW)
 - Low Energy connection – must stay under 15uJ maximum stored energy
 - Used to boot device controller to initialize communications
 - Switch to higher power after communication established and power level negotiated
Communications (current)

- Communication Method – 3.3V CAN Bus
- CAN Common Mode Voltage used for device detection.
 - No Device Detected – no power
 - Mute Device Detected – limited power 21 W maximum, 21V @ 1A
 - Bidirectional Device Detected – negotiate power flow based on priorities and capabilities of connected devices.
 - Smart Device Detected – Negotiate Power based on source and sink capabilities
 - Small power source may provide limited power with power sink adjusting to available power.

- Basic Messages
 - Available Power Message, source to sink defining source capability on this port at this time.
 - Requested Power Message, sink to source with requested power
 - Messages to supply device information, Manufacturer, Model, Serial number, Unique Identifier, etc.
 - Message to identify certification

- Advanced Messaging to discover larger device configuration and enable communications through connected devices.
Connector Design (current)

- Current Design
 - Spring Pin(Pogo) connector
 - 6 pin – 4 wire design
 - Cable has two identical ends
 - Cable replaceable with multiple lengths

- Features
 - Pins rated for 1,000,000 cycles
 - Power pins – Mill-Max 0850 series or equal
 - Communications pins – Mill-Max 0951 series or equal
 - Dual Main power pins for reliability – full capability if one fails
 - Pin Spacing supports 63V creepage and clearance under Pollution degree 3. IEC60950-1
 - Communications pins make last and break first.
 - No exposed pin has more than 3.3V probe voltage through 20Kohm resistor
 - Cable connector interface only to device connector (TARGET) is specified
 - Two stage mating – one for trip resistant low retention easily detached position, one for hard attach condition for critical connections and connections subject to high acceleration.
 - Device connector (Target) is fully specified.
 - Low profile – Flush with device surface.
 - Maximum surface penetration ~ 1.53 mm.
 - Surface can be sealed to resist moisture, dust, adult beverages, etc.
New UPAMD connector design

Cable Connector
Mating Interface Specified

Target/Device Connector
Fully Specified
19.5mm L X 5.1mm W X 1.53mm D

Cable/Connectors resistance limited to less than 50mOhms per power rail. 100mOhms total resistance
UPAMDM Market Size

- US DOE survey of domestic US shipments result for 2010
 - 221.5 Million EPS units in UPAMDM power range to US Domestic Market alone.
 - 302 Million battery charger in UPAMDM power range to US Domestic Market alone.
 - Battery Charges have both EPS and Battery control circuitry
- World wide shipments should reach 2-3 Billion units of BCS and EPS devices in UPAMDM power range.
- Current 2011 PC world shipments 354.4 Million units with 15.9% y/y growth. (iSuppli)
- Tablet market growth to reach 294 Million in 2015 (Gartner)
- Reference:
UPAMDP1823 Status

- Currently working to finish draft for balloting by working group.
- Expect Working Group approval mid-year.
- Plan on Sponsor Ballot in Q3/2012.
- Target Standards Board submission in Q4/2012.
- I am generally optimistic.