TSF Library - STDTSFLib

Schema Name:- STDTSFLib

Version:- 2.1

Schema Location:- STDTSFLib.xsd

namespace:- STDTSFLib

prefix:- this

Description:-

The IEEE P1641 default Test Signal Framework Library for compatable IEEE716-95 Signals This XML instance file is specified in IEEE Std 1641-20XX, "IEEE Standard for Signal and Test Definition." This schema is a World Wide Web Consortium (W3C) Extensible Markup Language (XML) binding of Annex E Test signal framework (TSF) for ATLAS Clause E.2 TSF library definition in XML" The purpose of this XML file is to provide unique TSF definitions inline with legacy ATLAS 716 signals.This files uses the W3C XML Schema definition language as the encoding. This allows for interoperability and the exchange of TSF component instances between various systems.This file shall not be modified but may be included in derivative works. Copyright (c) 2009 Institute of Electrical and Electronics Engineers, Inc. USE AT YOUR OWN RISK

AC_SIGNAL

Definition

A sinusoidal time-varying electrical signal.

Figure 1-TSF AC_SIGNAL(AC_SIGNAL)

Interface Properties

Table 1-TSF AC_SIGNAL Interface

 

Description

Name

Type

Default

Range

AC Signal amplitude

ac_ampl

Physical

DC Offset

dc_offset

Physical

0

AC Signal frequency

freq

Frequency

AC Signal phase angle

phase

PlaneAngle

0 rad

Notes

Model Description

Table 2-TSF AC_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

AC_Signal

Sum

Signal [Out]

 

 

   

Signal [In]

DC_Offset

   
   

Signal [In]

AC_Component

   

AC_Component

Sinusoid

Signal [Out]

 

AC_Signal

 

   

amplitude

ac_ampl

 

   

frequency

freq

 

   

phase

phase

 

DC_Offset

Constant

Signal [Out]

 

AC_Signal

 

   

amplitude

dc_offset

 

 

 

 

 

 

 

Rules

AM_SIGNAL

Definition

A continuous sinusoidal (carrier) wave whose amplitude is varied as a function of the instantaneous value of a second (modulating) wave.

Figure 2-TSF AM_SIGNAL(AM_SIGNAL)

Interface Properties

Table 3-TSF AM_SIGNAL Interface

 

Description

Name

Type

Default

Range

Carrier amplitude

car_ampl

Voltage

Carrier frequency

car_freq

Frequency

Modulation frequency

mod_freq

Frequency

Depth of modulation

mod_depth

Ratio

Modulation amplitude

mod_ampl

Voltage

1 V

Notes

Model Description

Table 4-TSF AM_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

AM_Signal

AM

Signal [Out]

 

 

   

modIndex

mod_depth

 

   

Carrier [In]

Carrier

   
   

Signal [In]

Modulation

   

Modulation

Sinusoid

Signal [Out]

 

AM_Signal

 

   

amplitude

mod_ampl

 

   

frequency

mod_freq

 

   

phase

 

0 rad

Carrier

Sinusoid

Signal [Out]

 

AM_Signal

 

   

amplitude

car_ampl

 

   

frequency

car_freq

 

   

phase

 

0 rad

 

 

 

 

 

 

Rules

DC_SIGNAL

Definition

An unvarying electrical signal with an optional ac component.

Figure 3-TSF DC_SIGNAL(DC_SIGNAL)

Interface Properties

Table 5-TSF DC_SIGNAL Interface

 

Description

Name

Type

Default

Range

DC Level

dc_ampl

Physical

AC Component amplitude

ac_ampl

Physical

0

AC Component frequency

freq

Frequency

0 Hz

AC Component phase angle

phase

PlaneAngle

0 rad

Notes

Model Description

Table 6-TSF DC_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

DC_Signal

Sum

Signal [Out]

 

 

   

Signal [In]

DC_Level

   
   

Signal [In]

DC_AC_Component

   

DC_AC_Component

Sinusoid

Signal [Out]

 

DC_Signal

 

   

amplitude

ac_ampl

 

   

frequency

freq

 

   

phase

phase

 

DC_Level

Constant

Signal [Out]

 

DC_Signal

 

   

amplitude

dc_ampl

 

 

 

 

 

 

 

Rules

DIGITAL_PARALLEL

Definition

A parallel digital source that creates a digital logic signal in which the physical values for logic 1, logic 0 and high impedance data values are determined by the logic threshold values specified.

Figure 4-TSF DIGITAL_PARALLEL(DIGITAL_PARALLEL)

Interface Properties

Table 7-TSF DIGITAL_PARALLEL Interface

 

Description

Name

Type

Default

Range

Data Value

data_value

Clock period

clock_period

Time

Logic One level

logic_one_value

Voltage

Logic Zero level

logic_zero_value

Voltage

Notes

Model Description

Table 8-TSF DIGITAL_PARALLEL Model

 

Name

Type

Terminal

Inputs

Output

Formula

Digital_Stream

ParallelDigital

Signal [Out]

 

 

   

data

data_value

 

   

period

clock_period

 

   

logic_H_value

logic_one_value

 

   

logic_L_value

logic_zero_value

 

   

pulseClass

NRZ

 

 

 

 

 

 

 

Rules

DIGITAL_SERIAL

Definition

A serial digital source that creates a digital logic signal in which the physical values for logic one, logic zero and high impedance data values are determined by the logic threshold values specified.

Figure 5-TSF DIGITAL_SERIAL(DIGITAL_SERIAL)

Interface Properties

Table 9-TSF DIGITAL_SERIAL Interface

 

Description

Name

Type

Default

Range

Data Value

data_value

Clock period. Zero denotes infinite time for static digital data.

clock_period

Time

Logic One level

logic_one_value

Voltage

Logic Zero level

logic_zero_value

Voltage

Notes

Model Description

Table 10-TSF DIGITAL_SERIAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

Serial_Stream

SerialDigital

Signal [Out]

 

 

   

data

data_value

 

   

period

clock_period

 

   

logic_H_value

logic_one_value

 

   

logic_L_value

logic_zero_value

 

   

pulseClass

NRZ

 

 

 

 

 

 

 

Rules

DIGITAL_TEST

Definition

Generate and measure digital data on the same pins. By default, this TSF defines a pin monitor capability on pins that are being STIMmed, in order that faulty pin drivers may be detected.

If this feature is not required, then the script in the data value of the ParallelDigital BSC DT_Sense should be modified so that 'H' and 'L' are both substituted with 'X' instead of being passed unchanged.

Figure 6-TSF DIGITAL_TEST(DIGITAL_TEST)

Interface Properties

Table 11-TSF DIGITAL_TEST Interface

 

Description

Name

Type

Default

Range

The duration of the digital step.

period

Time

Value of logic High in the output stream (voltage or current).

stim_H_value

Physical

Value of logic Low in the output stream (voltage or current).

stim_L_value

Physical

Threshold value of logic Low in the measurement (voltage or current).

resp_L_value

Physical

Threshold value of logic High in the measurement (voltage or current).

resp_H_value

Physical

The digital data to be generated or measured.

data

Notes

Model Description

Table 12-TSF DIGITAL_TEST Model

 

Name

Type

Terminal

Inputs

Output

Formula

DT_Source

ParallelDigital

Signal [Out]

 

 

   

data

 

{Replace(Replace(Replace(Replace(data, "h", "Z"), "l", "Z"), "z", "Z"), "x", "Z")}

   

period

period

 

   

logic_H_value

stim_H_value

 

   

logic_L_value

stim_L_value

 

   

pulseClass

NRZ

 

DT_Digital_Measure

Measure

[Out]

 

 

   

measuredVariable

DEPENDENT

 

   

measurement

 

0

   

samples

 

1

   

count

 

0

   

gateTime

 

0

   

nominal

 

0

   

condition

NONE

 

   

GO

false

 

   

NOGO

false

 

   

HI

false

 

   

LO

false

 

   

UL

 

   

LL

 

   

AS [In]

DT_Sense

   
   

Signal [In]

resp

   

DT_Sense

ParallelDigital

Signal [Out]

 

 

   

data

 

{Replace(Replace(Replace(Replace(Replace(Replace(data, "z", "Z"), "x", "X"), "Z", "X"), "X", "X"), "h", "H"), "l", "L")}

   

period

period

 

   

logic_H_value

resp_H_value

 

   

logic_L_value

resp_L_value

 

   

pulseClass

NRZ

 

resp

In

Signal [Out]

 

DT_Digital_Measure

 

 

 

 

 

 

 

Rules

DME_INTERROGATION

Definition

A radio aid to air navigation that provides distance information by measuring the time of transmission from an interrogator to a transponder and return.

The DME system is composed of a transponder in the ground based unit and an interrogator in the airborne unit. The interrogator on the aircraft emits a pulse signal that, once received by the DME transponder on the ground, starts a response sequence that sends a return pulse signal on a different (paired) channel to the aircraft. The aircraft equipment receives the response from the ground station, computes the elapsed time between interrogation and response, subtracts 50 Ás (to cover ground station processing time), and divides the result by 2. This result is then displayed on the DME indicator.

The DME operates on the UHF band in the range 962 MHz to 1213 MHz with a step of 1 MHz. The frequencies used by the interrogator are between 1025 MHz and 1150 MHz, and the transponder on the ground replies using two set frequencies: the first from 962 MHz to 1024 MHz and the second from 1151 MHz to 1213 MHz. The number of available frequencies is 252, making 126 available channels. Each channel has 2 frequencies: one for interrogation and the other for the response from the ground station. On each pair of frequencies, the difference between the interrogator frequency and the response frequency is always 63 MHz. For the channels between 1 and 63, the interrogation frequency is 63 MHz higher than the response frequency and for channels from 63 to 126 the response frequency is 63 MHz higher than the interrogator frequency.

Figure 7-TSF DME_INTERROGATION(DME_INTERROGATION)

Interface Properties

Table 13-TSF DME_INTERROGATION Interface

 

Description

Name

Type

Default

Range

Carrier Amplitude

car_ampl

Voltage

Interrogator Frequency

int_freq

Frequency

1025 MHz

Interrogation Rate

int_rate

Frequency

27 Hz

Notes

Model Description

Table 14-TSF DME_INTERROGATION Model

 

Name

Type

Terminal

Inputs

Output

Formula

DME_Interrogation

PulseTrain

Signal [Out]

 

 

   

pulses

 

(0 us, 3.5 us, 1), (15.5 us, 3.5 us,1)

   

repetition

 

1

   

Signal [In]

Int_Carrier

   
   

Sync[In]

Int_Event

   

Int_Carrier

Sinusoid

Signal [Out]

 

DME_Interrogation

 

   

amplitude

car_ampl

 

   

frequency

int_freq

 

   

phase

 

0 rad

Int_Event

TimedEvent

Event [Out]

 

DME_Interrogation

 

   

delay

 

0 s

   

duration

 

20 Ás

   

period

 

{1/int_rate.magnitude}

   

repetition

 

0

 

 

 

 

 

 

Rules

DME_RESPONSE

Definition

A radio aid to air navigation that provides distance information by measuring the time of transmission from an interrogator to a transponder and return.

The DME system is composed of a transponder in the ground based unit and an interrogator in the airborne unit. The interrogator on the aircraft emits a pulse signal that once received by the DME transponder on the ground, starts a response sequence which sends a return pulse signal on a different (paired) channel to the aircraft. The aircraft equipment receives the response from the ground station, computes the elapsed time between interrogation and response, subtracts 50 Ás (to cover ground station processing time), and divides the result by 2. This result is then displayed on the DME indicator.

The DME operates on the UHF band in the range 962 MHz to 1213 MHz with a step of 1 MHz. The frequencies used by the interrogator are between 1025 MHz and 1150 MHz, and the transponder on the ground replies using two set frequencies, the first from 962 MHz to 1024 MHz and the second from 1151 MHz to 1213 MHz. The number of available frequencies is 252, making 126 available channels. Each channel has 2 frequencies: one for interrogation and the other for the response from the ground station. On each pair of frequencies the difference between the interrogator frequency and the response frequency is always 63 MHz. For the channels between 1 and 63, the interrogation frequency is 63 MHz higher than the response frequency; and for channels from 63 to 126 the response frequency is 63 MHz higher than the interrogator frequency.

Figure 8-TSF DME_RESPONSE(DME_RESPONSE)

Interface Properties

Table 15-TSF DME_RESPONSE Interface

 

Description

Name

Type

Default

Range

Transponder Frequency

resp_freq

Frequency

962 MHz

Carrier Amplitude

car_ampl

Voltage

Slant Range

range

Distance

0 m

Range Rate

rate

Speed

0 m/s

Rate of Change of Range Rate

accn

Acceleration

0 m/s2

Notes

Model Description

Table 16-TSF DME_RESPONSE Model

 

Name

Type

Terminal

Inputs

Output

Formula

DME_Response

SignalDelay

Signal [Out]

 

 

   

acceleration

 

{accn.magnitude*2/3.0e8}

   

delay

 

{range.magnitude*2/3.0e8}

   

rate

 

{(rate.magnitude*2)/3.0e8}

   

Signal [In]

Response_Delay

   

Response_Delay

SignalDelay

Signal [Out]

 

DME_Response

 

   

acceleration

 

0 Hz

   

delay

 

50 us

   

rate

 

0%

   

Signal [In]

Response_Train

   

Response_Train

PulseTrain

Signal [Out]

 

Response_Delay

 

   

pulses

 

(0 us, 3.5 us,1), (15.5us, 3.5 us,1)

   

repetition

 

1

   

Signal [In]

Resp_Carrier

   
   

Sync[In]

Resp_Event_Train

   

Resp_Carrier

Sinusoid

Signal [Out]

 

Response_Train

 

   

amplitude

car_ampl

 

   

frequency

resp_freq

 

   

phase

 

0 rad

Resp_Event_Train

OrEvent

Event [Out]

 

Response_Train

 

   

Signal [In]

Resp_Event_B

   
   

Signal [In]

DME_Pulse_Detect

   

DME_Pulse_Detect

AndEvent

Event [Out]

 

Resp_Event_Train

 

   

Signal [In]

Interrogation_Event_Window

   
   

Signal [In]

DME_P2_Detect

   

Resp_Event_B

ProbabilityEvent

Event [Out]

 

Resp_Event_Train

 

   

seed

 

0

   

probability

 

10%

   

Signal [In]

Resp_Event_A

   

Resp_Event_A

TimedEvent

Event [Out]

 

Resp_Event_B

 

   

delay

 

0 s

   

duration

 

20 us

   

period

 

37 us

   

repetition

 

0

DME_P2_Detect

SignalDelay

Signal [Out]

 

DME_Pulse_Detect

 

   

acceleration

 

0 Hz

   

delay

 

15.5 us

   

rate

 

0%

   

Signal [In]

Interrogation_Event_Window

   

Interrogation_Event_Window

RMS

[Out]

 

DME_Pulse_Detect DME_P2_Detect

 

   

measuredVariable

DEPENDENT

 

   

measurement

 

0

   

samples

 

1

   

count

 

0

   

gateTime

 

1.0e-8

   

nominal

 

0.1

   

condition

GE

 

   

GO

false

 

   

NOGO

false

 

   

HI

false

 

   

LO

false

 

   

UL

 

   

LL

 

   

Signal [In]

dme_Interrogation

   

dme_Interrogation

In

Signal [Out]

 

Interrogation_Event_Window

 

 

 

 

 

 

 

Rules

FM_SIGNAL

Definition

A continuous sinusoidal (carrier)wave generated when the frequency of one wave is varied in accordance with the amplitude of another (modulating)wave.

Figure 9-TSF FM_SIGNAL(FM_SIGNAL)

Interface Properties

Table 17-TSF FM_SIGNAL Interface

 

Description

Name

Type

Default

Range

Carrier amplitude

car_ampl

Physical

Carrier frequency

car_freq

Frequency

Frequency Deviation

freq_dev

Frequency

Modulation frequency

mod_freq

Frequency

Modulation amplitude

mod_ampl

Physical

Notes

Model Description

Table 18-TSF FM_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

FM_Signal

FM

Signal [Out]

 

 

   

amplitude

car_ampl

 

   

carrierFrequency

car_freq

 

   

frequencyDeviation

freq_dev

 

   

Signal [In]

Modulating_Signal

   

Modulating_Signal

Sinusoid

Signal [Out]

 

FM_Signal

 

   

amplitude

mod_ampl

 

   

frequency

mod_freq

 

   

phase

 

0 rad

 

 

 

 

 

 

Rules

ILS_GLIDE_SLOPE

Definition

The glide slope is the vertical guidance portion of an ILS.

At present, 40 glide slope channels exist with 150 kHz channel separation in the frequency range from 328.6 MHz to 335.4 MHz. The carrier is amplitude modulated at 90 Hz and 150 Hz in a spatial pattern, with the 90 Hz modulation predominant when the airplane is above the glide path, and the 150 Hz modulation predominant if the airplane is below the glide path. This glide slope signal is achieved by transmitting 2 beams with equal offset about the correct glide slope angle. The upper beam is modulated to a depth of 40% with a 90 Hz tone, and the lower beam is modulated to a depth of 40% with a 150 Hz tone. The carrier of both beams is phase-locked so that any receiver will treat them as a single-carrier signal with two modulating tones. If the aircraft is positioned off the glide slope, the ILS receiver will detect one signal as stronger than the other. As a result, the demodulated amplitude (or apparent depth of modulation) of one tone will be greater than that of the other. If the receiver is exactly on the glide slope, it will receive an RF carrier where the 90 Hz and 150 Hz modulation depths appear exactly the same. The greater the deviation from the glide slope, the greater will be the difference in amplitude of the tones.

Figure 10-TSF ILS_GLIDE_SLOPE(ILS_GLIDE_SLOPE)

Interface Properties

Table 19-TSF ILS_GLIDE_SLOPE Interface

 

Description

Name

Type

Default

Range

Carrier amplitude

car_ampl

Physical

2 mV

Frequency

car_freq

Frequency

328.6 MHz

150 Hz attenuation depth

onefifty_level

Ratio

1

90 Hz attenuation depth

ninety_level

Ratio

1

Notes

Model Description

Table 20-TSF ILS_GLIDE_SLOPE Model

 

Name

Type

Terminal

Inputs

Output

Formula

Glide_Slope

Sum

Signal [Out]

 

 

   

Signal [In]

Glide_Slope_Lo

   
   

Signal [In]

Glide_Slope_Hi

   

Glide_Slope_Hi

Attenuator

Signal [Out]

 

Glide_Slope

 

   

gain

ninety_level

 

   

Signal [In]

Glide_90_Hz_Modulated_Signal

   

Glide_Slope_Lo

Attenuator

Signal [Out]

 

Glide_Slope

 

   

gain

onefifty_level

 

   

Signal [In]

Glide_150_Hz_Modulated_Signal

   

Glide_90_Hz_Modulated_Signal

AM

Signal [Out]

 

Glide_Slope_Hi

 

   

modIndex

 

0.4

   

Carrier [In]

Glide_Slope_Carrier

   
   

Signal [In]

Glide_90Hz_Tone

   

Glide_150_Hz_Modulated_Signal

AM

Signal [Out]

 

Glide_Slope_Lo

 

   

modIndex

 

0.4

   

Carrier [In]

Glide_Slope_Carrier

   
   

Signal [In]

Glide_150Hz_Tone

   

Glide_90Hz_Tone

Sinusoid

Signal [Out]

 

Glide_90_Hz_Modulated_Signal

 

   

amplitude

 

1

   

frequency

 

90 Hz

   

phase

 

0 rad

Glide_150Hz_Tone

Sinusoid

Signal [Out]

 

Glide_150_Hz_Modulated_Signal

 

   

amplitude

 

1

   

frequency

 

150 Hz

   

phase

 

0 rad

Glide_Slope_Carrier

Sinusoid

Signal [Out]

 

Glide_150_Hz_Modulated_Signal

 

   

amplitude

car_ampl

 

   

frequency

car_freq

 

   

phase

 

0

 

 

 

 

 

 

Rules

ILS_LOCALIZER

Definition

The localizer is the lateral guidance portion of the ILS, giving azimuth guidance with reference to the runway centre line. It operates using the same principles as the Glide Slope but with forty channels in the VHF band 108.0 MHz to 112.0 MHz. Each localizer channel is paired with a glide slope channel. The carrier is modulated with 90 Hz and 150 Hz tones in a spatial pattern that makes the 90 Hz tone predominant when the aircraft is to the left of the course and the 150 Hz tone predominant when the aircraft is to the right of the course. The localizer carrier contains a Morse coded signal identifying the runway and approach direction and also may carry a ground-to-air communication channel.

Figure 11-TSF ILS_LOCALIZER(ILS_LOCALIZER)

Interface Properties

Table 21-TSF ILS_LOCALIZER Interface

 

Description

Name

Type

Default

Range

Carrier Amplitude

car_ampl

Physical

2 mW

Carrier frequency

car_freq

Frequency

108.1 MHz

150 Hz attenuation depth

onefifty_level

Ratio

1

90 Hz attenuation depth

ninety_level

Ratio

1

Notes

Model Description

Table 22-TSF ILS_LOCALIZER Model

 

Name

Type

Terminal

Inputs

Output

Formula

ILS_Localizer

Sum

Signal [Out]

 

 

   

Signal [In]

Localizer_L

   
   

Signal [In]

Localizer_R

   

Localizer_R

Attenuator

Signal [Out]

 

ILS_Localizer

 

   

gain

onefifty_level

 

   

Signal [In]

ILS_150Hz_Modulated_Signal

   

Localizer_L

Attenuator

Signal [Out]

 

ILS_Localizer

 

   

gain

ninety_level

 

   

Signal [In]

ILS_90Hz_Modulated_Signal

   

ILS_150Hz_Modulated_Signal

AM

Signal [Out]

 

Localizer_R

 

   

modIndex

 

0.2

   

Carrier [In]

Localizer_Carrier

   
   

Signal [In]

ILS_150Hz_Tone

   

ILS_90Hz_Modulated_Signal

AM

Signal [Out]

 

Localizer_L

 

   

modIndex

 

0.2

   

Carrier [In]

Localizer_Carrier

   
   

Signal [In]

ILS_90Hz_Tone

   

ILS_150Hz_Tone

Sinusoid

Signal [Out]

 

ILS_150Hz_Modulated_Signal

 

   

amplitude

 

1

   

frequency

 

150Hz

   

phase

 

0 rad

ILS_90Hz_Tone

Sinusoid

Signal [Out]

 

ILS_90Hz_Modulated_Signal

 

   

amplitude

 

1

   

frequency

 

90 Hz

   

phase

 

0 rad

Localizer_Carrier

Sinusoid

Signal [Out]

 

ILS_90Hz_Modulated_Signal

 

   

amplitude

car_ampl

 

   

frequency

car_freq

 

   

phase

 

0 rad

 

 

 

 

 

 

Rules

ILS_MARKER

Definition

Two or three marker beacons operate at 75 MHz to give range with reference to the touch-down point. The outer marker is modulated with a 400 Hz tone to a depth of 95%. It is located 3.5 nmi to 6 nmi (6 km to 11 km)from the end of the runway where the glide slope intersects the procedure turn altitude ▒ 50 ft (15 m)vertically. It radiates a fan shaped pattern vertically and normal to the localizer and activates a marker receiver when the aircraft passes through.

The middle marker is a second fan shaped marker similar to the outer marker. It is located approximately 0.5 nmi to 0.8 nmi (1 km to 1.5 km)from the ILS approach end of the runway and modulated at 1300 Hz. The inner marker, when used for category II approaches, intercepts the glide path at about the 100 ft (30 m)height to mark the over-shoot decision point (if the runway is still not visible). The marker is recognized by its 3000 Hz modulation. Category II approaches allow operation down to 100 ft (30 m)and 1300 ft (400 m) visibility.

Figure 12-TSF ILS_MARKER(ILS_MARKER)

Interface Properties

Table 23-TSF ILS_MARKER Interface

 

Description

Name

Type

Default

Range

Marker Frequency

marker_freq

Frequency

400 Hz

Carrier Frequency

car_ampl

Power

2 mW

Notes

Model Description

Table 24-TSF ILS_MARKER Model

 

Name

Type

Terminal

Inputs

Output

Formula

Marker_Signal

AM

Signal [Out]

 

 

   

modIndex

 

0.95

   

Carrier [In]

Marker_Carrier

   
   

Signal [In]

Marker_Tone

   

Marker_Tone

Sinusoid

Signal [Out]

 

Marker_Signal

 

   

amplitude

 

1 V

   

frequency

marker_freq

 

   

phase

 

0 rad

Marker_Carrier

Sinusoid

Signal [Out]

 

Marker_Signal

 

   

amplitude

car_ampl

 

   

frequency

 

75 MHz

   

phase

 

0 rad

 

 

 

 

 

 

Rules

PM_SIGNAL

Definition

A continuous sinusoidal wave (carrier) whose phase is varied in accordance with the amplitude of another wave.

Figure 13-TSF PM_SIGNAL(PM_SIGNAL)

Interface Properties

Table 25-TSF PM_SIGNAL Interface

 

Description

Name

Type

Default

Range

Carrier amplitude

car_ampl

Voltage

Carrier frequency

car_freq

Frequency

Phase Deviation

phase_dev

PlaneAngle

Modulation frequency

mod_freq

Frequency

Modulation amplitude

mod_ampl

Voltage

1 V

Notes

Model Description

Table 26-TSF PM_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

PM_Signal

PM

Signal [Out]

 

 

   

amplitude

car_ampl

 

   

carrierFrequency

car_freq

 

   

phaseDeviation

phase_dev

 

   

Signal [In]

PModulating_Signal

   

PModulating_Signal

Sinusoid

Signal [Out]

 

PM_Signal

 

   

amplitude

mod_ampl

 

   

frequency

mod_freq

 

   

phase

 

0 rad

 

 

 

 

 

 

Rules

PULSED_AC_SIGNAL

Definition

A signal characterized by short duration periods of (sinusoidal) ac electrical potential.

Figure 14-TSF PULSED_AC_SIGNAL(PULSED_AC_SIGNAL)

Interface Properties

Table 27-TSF PULSED_AC_SIGNAL Interface

 

Description

Name

Type

Default

Range

AC Signal amplitude

ac_ampl

Physical

AC Signal frequency

freq

Frequency

DC offset

dc_offset

Physical

0

Initial delay

p_delay

Time

0 s

Pulse width

p_duration

Time

Pulse repetition frequency

prf

Frequency

Number of pulses

p_repetition

int

0

Notes

Model Description

Table 28-TSF PULSED_AC_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

Pulsed_AC_Signal

Sum

Signal [Out]

 

 

   

Signal [In]

PAC_DC_Offset

   
   

Signal [In]

PAC_AC_Component

   

PAC_AC_Component

Sinusoid

Signal [Out]

 

Pulsed_AC_Signal

 

   

amplitude

ac_ampl

 

   

frequency

freq

 

   

phase

phase

 

   

Gate[In]

Pulse

   

PAC_DC_Offset

Constant

Signal [Out]

 

Pulsed_AC_Signal

 

   

amplitude

dc_offset

 

Pulse

TimedEvent

Event [Out]

 

PAC_AC_Component

 

   

delay

p_delay

 

   

duration

p_duration

 

   

period

 

{1/prf.magnitude}

   

repetition

p_repetition

 

 

 

 

 

 

 

Rules

PULSED_AC_TRAIN

Definition

A signal, characterized by a train of pulses of sinusoidal electrical ac activity with different durations and amplitudes.

Figure 15-TSF PULSED_AC_TRAIN(PULSED_AC_TRAIN)

Interface Properties

Table 29-TSF PULSED_AC_TRAIN Interface

 

Description

Name

Type

Default

Range

AC amplitude

ac_ampl

Physical

AC frequency

freq

Frequency

DC offset

dc_offset

Physical

0

Pulse train

pulse_train

PulseDefns

Notes

Model Description

Table 30-TSF PULSED_AC_TRAIN Model

 

Name

Type

Terminal

Inputs

Output

Formula

Pulsed_AC_Train

Sum

Signal [Out]

 

 

   

Signal [In]

PACT_DC_Offset

   
   

Signal [In]

Pulsed_AC

   

Pulsed_AC

PulseTrain

Signal [Out]

 

Pulsed_AC_Train

 

   

pulses

pulse_train

 

   

repetition

 

1

   

Signal [In]

PACT_AC_Component

   

PACT_DC_Offset

Constant

Signal [Out]

 

Pulsed_AC_Train

 

   

amplitude

dc_offset

 

PACT_AC_Component

Sinusoid

Signal [Out]

 

Pulsed_AC

 

   

amplitude

ac_ampl

 

   

frequency

freq

 

   

phase

phase

 

 

 

 

 

 

 

Rules

PULSED_DC_SIGNAL

Definition

A signal characterized by a train of pulses of electrical dc activity with different durations and amplitudes with an optional ac component.

Figure 16-TSF PULSED_DC_SIGNAL(PULSED_DC_SIGNAL)

Interface Properties

Table 31-TSF PULSED_DC_SIGNAL Interface

 

Description

Name

Type

Default

Range

DC level

dc_ampl

Physical

AC component amplitude

ac_ampl

Physical

0

AC component frequency

freq

Frequency

0 Hz

Delay before first pulse

p_delay

Time

0 s

Pulse width

p_duration

Time

Pulse repetition frequency

prf

Frequency

Number of pulses

p_repetition

int

0

Notes

Model Description

Table 32-TSF PULSED_DC_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

Pulsed_DC_Signal

Sum

Signal [Out]

 

 

   

Signal [In]

PDC_AC_Component

   
   

Signal [In]

PDC_DC_Level

   

PDC_DC_Level

Constant

Signal [Out]

 

Pulsed_DC_Signal

 

   

amplitude

dc_ampl

 

   

Gate[In]

PDC_Pulse

   

PDC_AC_Component

Sinusoid

Signal [Out]

 

Pulsed_DC_Signal

 

   

amplitude

ac_ampl

 

   

frequency

freq

 

   

phase

 

0 rad

PDC_Pulse

TimedEvent

Event [Out]

 

PDC_DC_Level

 

   

delay

p_delay

 

   

duration

p_duration

 

   

period

 

{1/prf.magnitude}

   

repetition

p_repetition

 

 

 

 

 

 

 

Rules

PULSED_DC_TRAIN

Definition

A signal, characterized by a train of different, short duration periods of dc electrical activity.

Figure 17-TSF PULSED_DC_TRAIN(PULSED_DC_TRAIN)

Interface Properties

Table 33-TSF PULSED_DC_TRAIN Interface

 

Description

Name

Type

Default

Range

DC level

dc_ampl

Physical

Pulse train

pulse_train

PulseDefns

AC Component amplitude

ac_ampl

Physical

0

AC Component frequency

freq

Frequency

0 Hz

Notes

Model Description

Table 34-TSF PULSED_DC_TRAIN Model

 

Name

Type

Terminal

Inputs

Output

Formula

Pulsed_DC_Train

Sum

Signal [Out]

 

 

   

Signal [In]

PDCT_AC_Component

   
   

Signal [In]

PDCT_Pulsed_DC

   

PDCT_Pulsed_DC

PulseTrain

Signal [Out]

 

Pulsed_DC_Train

 

   

pulses

pulse_train

 

   

repetition

 

1

   

Signal [In]

PDCT_DC_Level

   

PDCT_AC_Component

Sinusoid

Signal [Out]

 

Pulsed_DC_Train

 

   

amplitude

ac_ampl

 

   

frequency

freq

 

   

phase

 

0 rad

PDCT_DC_Level

Constant

Signal [Out]

 

PDCT_Pulsed_DC

 

   

amplitude

dc_ampl

 

 

 

 

 

 

 

Rules

RADAR_RX_SIGNAL

Definition

An appropriately delayed signal response to an input radar signal.

Figure 18-TSF RADAR_RX_SIGNAL(RADAR_RX_SIGNAL)

Interface Properties

Table 35-TSF RADAR_RX_SIGNAL Interface

 

Description

Name

Type

Default

Range

Atten

atten

Ratio

1

Range of simulated target

range

Distance

Rate of change of rate change

range_accn

Acceleration

0

Rate of change of target range

range_rate

Speed

0

Proportion of Tx pulses returned

reply_eff

Ratio

100%

Notes

Model Description

Table 36-TSF RADAR_RX_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

Radar_RX_Signal

SignalDelay

Signal [Out]

 

 

   

acceleration

 

{range_accn.magnitude*2/3.0e8}

   

delay

 

{range.magnitude*2/3.0e8}

   

rate

 

{range_rate.magnitude*2/3.0e8}

   

Signal [In]

Car_Pulse

   

Car_Pulse

Attenuator

Signal [Out]

 

Radar_RX_Signal

 

   

gain

atten

 

   

Signal [In]

radar_TX_Signal

   
   

Gate[In]

Suppressed_Event_Train

   

Suppressed_Event_Train

ProbabilityEvent

Event [Out]

 

Car_Pulse

 

   

seed

 

0

   

probability

reply_eff

 

   

Signal [In]

Event_Train

   

Event_Train

RMS

[Out]

 

Suppressed_Event_Train

 

   

measuredVariable

DEPENDENT

 

   

measurement

 

0

   

samples

 

1

   

count

 

0

   

gateTime

 

1.0e-8

   

nominal

 

0.1

   

condition

GE

 

   

GO

false

 

   

NOGO

false

 

   

HI

false

 

   

LO

false

 

   

UL

 

   

LL

 

   

Signal [In]

radar_TX_Signal

   

radar_TX_Signal

In

Signal [Out]

 

Car_Pulse Event_Train

 

 

 

 

 

 

 

Rules

RADAR_TX_SIGNAL

Definition

A pulsed ac signal used as a reference for received radar signals (i.e., Radar_RX_Signal).

Figure 19-TSF RADAR_TX_SIGNAL(RADAR_TX_SIGNAL)

Interface Properties

Table 37-TSF RADAR_TX_SIGNAL Interface

 

Description

Name

Type

Default

Range

Tx signal amplitude

ampl

Physical

Tx signal frequency

freq

Frequency

Initial delay

delay

Time

0 s

Pulse duration

duration

Time

Pulse repetition frequency

prf

Frequency

Number of pulses

repetition

int

0

Notes

Model Description

Table 38-TSF RADAR_TX_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

RADAR_TX_Signal

Sinusoid

Signal [Out]

 

 

   

amplitude

ampl

 

   

frequency

freq

 

   

phase

 

0 rad

   

Gate[In]

RTX_Event_Train

   

RTX_Event_Train

TimedEvent

Event [Out]

 

RADAR_TX_Signal

 

   

delay

delay

 

   

duration

duration

 

   

period

 

{1/prf.magnitude}

   

repetition

repetition

 

 

 

 

 

 

 

Rules

RAMP_SIGNAL

Definition

A periodic wave whose instantaneous value varies alternately and linearly between two specified values (i.e., initial and alternate).

Figure 20-TSF RAMP_SIGNAL(RAMP_SIGNAL)

Interface Properties

Table 39-TSF RAMP_SIGNAL Interface

 

Description

Name

Type

Default

Range

Ramp signal amplitude

ampl

Physical

DC offset

dc_offset

Physical

0

Ramp signal period

period

Time

Ramp signal time to rise

rise_time

Time

Notes

Model Description

Table 40-TSF RAMP_SIGNAL Model

 

Name

Type

Terminal

Inputs

Output

Formula

Ramp_Signal

Sum

Signal [Out]

 

 

   

Signal [In]

Ramp_DC_Offset

   
   

Signal [In]

Ramp_Component

   

Ramp_Component

Ramp

Signal [Out]

 

Ramp_Signal

 

   

amplitude

ampl

 

   

period

period

 

   

riseTime

rise_time

 

Ramp_DC_Offset

Constant

Signal [Out]

 

Ramp_Signal

 

   

amplitude

dc_offset

 

 

 

 

 

 

 

Rules

RANDOM_NOISE

Definition

Transient disturbances occurring unpredictably, except in a statistical sense.

Figure 21-TSF RANDOM_NOISE(RANDOM_NOISE)

Interface Properties

Table 41-TSF RANDOM_NOISE Interface

 

Description

Name

Type

Default

Range

Noise signal amplitude

ampl

Physical

Pseudo random noise frequency

freq

Frequency

0

Pseudo random noise seed

seed

long

0

Notes

Model Description

Table 42-TSF RANDOM_NOISE Model

 

Name

Type

Terminal

Inputs

Output

Formula

Noise

Noise

Signal [Out]

 

 

   

amplitude

ampl

 

   

seed

seed

 

   

frequency

freq

 

 

 

 

 

 

 

Rules

RESOLVER

Definition

Two ac sine wave voltages whose relationships of amplitude represent the rotation of a shaft position of an electro-mechanical transducer,

Figure 22-TSF RESOLVER(RESOLVER)

Interface Properties

Table 43-TSF RESOLVER Interface

 

Description

Name

Type

Default

Range

Shaft angle

angle

PlaneAngle

0

Reference amplitude

ampl

Voltage

26 V

Reference frequency

freq

Frequency