Mobile SDN
Current Technologies for Mobile Software Defined Networks - Security and Performance Issues

Evripidis Paraskevas
M.S. and Ph.D. Candidate
University of Maryland College Park

evripar@umd.edu
Introduction to SDN

- Networks are very complex to manage and evolve
- SDN introduce separation of control and data plane

Data Plane:
- Forwarding decision based on packet header
- Local Procedure

Control Plane:
- Routing procedure
- Traffic engineering (optimal traffic flow distribution)
- Achieve end-to-end QoS guarantees (delay, throughput, etc.)
Mobile Networks and SDN

• SDN was initially designed for wired networks
• Current work investigates extension of SDN for mobile wireless networks
• Challenges:
 – Existing SDN framework stops at network edge
 – Cannot control the QoS performance of the client device
 – New techniques to push SDN to the clients (edge)
Mobile Extension of SDN

- Two architectures that extend SDN to the edge:
 - MobiSDN from Samsung Research [1]:
 Propose a new architecture to enable smart edge, which enables extension of SDN to the client
 - meSDN from HP Labs and Networking Group [2]:
 Extend SDN framework to the end device and the control-plane of wireless network to the mobile device
MobiSDN: Prototype Architecture

Central Controller and Data Plane:
 • SDN, OpenFlow switches, eNB, servers

Smart Edge:
 • eNB: SDN capable, Edge controller: SDN and edge servers

Cloud EPC:
 • SDN capable, OpenFlow switches, servers
Smart Edge Functionalities

• Smart Edge needs to:
 – Handle big mobile data and huge mobile video traffic demand
 – Meet the E2E performance requirements

• Three core supported functionalities in MobiSDN:
 – *Distributed Processing/Computing*:
 Computing at the edge and load balancing
 – *Distributed file system*:
 Fast search (Hadoop MapReduce), distributed storage, cache sharing
 – *Network Controller*:
 SDN-based programmable routing, distributed policy checking and middle-box friendly
MobiSDN Application Support

• Content-Delivery Networks (CDNs) with MobiSDN
 – High QoE (Quality of Experience)
 – Cache Server interacts with SDN controller to find best routes for content distribution

• Low latency
 – Augmented reality server interacts with SDN controller to find the best routes
 – QoE management system provides inputs for QoE boosting and low latency

• Virtualization for value-adding services
Mobility Support with MobiSDN

- **Low Latency mobility:**
 Short and flexible route using SDN
- **Efficient multi-route:**
 Multi-route support using SDN, different QoS traffic on different paths
meSDN: Mobile Extension of SDN

• meSDN allows the SDN framework to be extended to the end device

• meSDN introduces smartness in end devices
 – Real-time monitoring and management of mobile application’s traffic flows
 – Ground-truth about client application information
 – Guaranteed end-to-end QoS service for clients
meSDN Architecture

- **Flow Manager (e.g., OpenFlow switch)**
 - Collects flow statistics
 - Enables SDN policies

- **Scheduler (e.g., Wi-Fi Driver)**
 - Receives time window from local controller for scheduling of packets

- **Local Controller**
 - Generates flow rules for OpenFlow switch per-application
 - Controls the scheduler

- **Global Controller**
 - Interacts with local controller
 - Collects airtime demand of applications and QoS requirements
 - Applies proper actions to local controller to manage traffic
pTDMA: WLAN Virtualization

• pTDMA is a simple prototype of meSDN for WLAN virtualization service

• WLAN virtualization enables effective sharing of wireless resources by different users with diverse requirements
 – Manage airtime share between clients that coexist in space and channel
pTDMA Scheduling Principles

• Allocate large time window to transmit and receive multiple packets
• Schedule multiple clients in a common slot to maximize channel utilization
• Configure interval between consecutive time windows based on traffic demand of different applications
pTDMA: Prototype Implementation

- Integrate meSDN client-side component to eight Google Nexus 4 Android phones
- Install OpenFlow switch and pTDMA kernel modules
- Re-build the kernel image
Security Concerns for Mobile SDN

- Applications and Controller have control of the network and need to be trusted
- DoS attacks
- Traffic to compromised nodes
- “Man in the middle” attacks
- Eavesdropping traffic
- Modifying data traffic
Defeat Crossfire Attack with SDN [3]

- DoS link-flooding attack
- Mitigation of the attack using SDN paradigm
- Dynamic traffic engineering to detect and mitigate the Crossfire attack
- Repeatedly modifying how traffic is routed and monitoring sources that react to re-routing
Issues to be Investigated

• Extension of capabilities of mobile devices using MobiSDN architecture
• Investigation of improvements on Mobile SDN architecture
• Lack of extensive research on Mobile SDN security issues
References

[2] Jeongkeun Lee et al., *meSDN: Mobile Extension of SDN*

[3] Dimitrios Gkounis et al., *Towards Defeating the Crossfire Attack using SDN*
Thank you!!

Questions?

Contact Information:
Evripidis Paraskevas: evripar@umd.edu
http://www.ece.umd.edu/~evripar/