Cost Effectiveness of Distribution Automation

Charlie Williams
S&C Electric Company

Reliability Improvement Options

Two General Categories

- Fault Prevention
- Fault Mitigation

Fault Prevention

- Lightning protection
- Tree Trimming
- Animal Protection
- Others
- Can be targeted in an integrated optimized blend of programs

Fault Mitigation

- Fuse Save Overcurrent Protection
 - Prevents temporary branch line faults from becoming sustained interruptions
- Feeder Design Schemes
 - -Main Line Reclosers
 - -Switches
 - Distributed Automation (DA) or SCADA
 - -Switching and Restoration Strategies

Why Automation or SCADA?

•Improved Reliability

- But how much improvement?
- At what Cost?

Predictive Reliability

 Evaluates the system performance based on system design configuration and historical operating data or assumptions

Terms

- SBD = Solid Blade Disconnect Switch
- SCADA = Remote controlled switch requires human input to change state
- DA = Distributed Automation system with local on site intelligence and communication (Intelliteam II)

Input Parameters

- Frate = annual permanent fault rate (Faults/mile / yr)
- Length = total miles of main line feeder exposure
- Customers = total customers served (includes customers on fused taps)
- MTTS = Mean time to switch (varies by switch type)
- MTTR = Mean time to repair and restore faulted segment
- Segment = section of line between switching devices

Reliability Measures

- IEEE 1366 Standard for Reliability Reporting
- SAIDI = CMI/C
- SAIFI = CI/C
- CAIDI = CMI/CI
- CMI = Customer minutes of interruption
- Outage = interruption > = 5 minutes
- Momentary = interruption < 5 minutes
 - Measured by MAIFI = Mi*Ci / C

Feeder Design Scheme

Switches can be many types:

SBD – RCL - SCADA - DA

Feeder Design Schemes

- SBD Radial
- RCL Radial
- SBD Loop
- RCL Loop
- SCADA RCL LOOP
- SCADA SBD LOOP
- Distributed Automation Loop (DA Loop)

Feeder Design Schemes – Loop SBD

- All Switches are SBD
- Require local manual operation
- Non Fault interrupt
- Provide for manual segmentation after fault
- May or may not have alternate feeder tie(s)
- All segments experience initial outage
- Faulted segment outage duration = MTTR
- Other segment outage durations = MTTS

Feeder Design Schemes – Loop RCL

- Provide Switching capabilities fault and load interrupt rated
- Faulted Segment and downstream segments see initial outage
- Faulted segment outage duration = MTTR
- Downstream outage segment duration = MTTS
- Upstream segments see no outage
- Provide automatic isolation for downline faults
- Requires local manual operation to restore service

Feeder Design Schemes – SCADA RCL

- Provide Switching and fault isolation capabilities
 - Fault interrupt rated with overcurrent protection
 - only downstream customers experience outage
- Provide remote fault indication and switching control
- Requires dispatcher operation to restore service
- Faulted segment duration = MTTR
- Other segment durations = MTTS

Feeder Design Schemes – SCADA SBD

- Provide Switching capabilities
 - Usually fault close but only load interrupt rated
 - All customers experience initial outage
- Provide remote fault indication and switching control
- Requires dispatcher operation to restore service
- Faulted segment duration = MTTR
- Other segment durations = MTTS

Feeder Design Schemes – Loop DA

- Uses Distributed Intelligence and Communication
- Provides automatic faulted segment isolation
- Provides automatic restoration to loads via feeder ties (<5 min) = No "outage" per IEEE 1366
- Only the faulted segment experiences an outage
- Can automatically check for and prevent overloads

Predicted Reliability Assumptions

- Uniform Fault Rates = Frate
- Uniform Customer distribution (Customers/mile)
- Adequate capacity for transfer of load
- All segments are linear only one alternate tie

Segmentation Advantages

- Breaks Feeder into smaller pieces
 - Less customers interrupted per segment
 - Less miles = lower fault exposure = fewer outages
 to a particular segment
- Measure of Segmentation = Customers*Miles

Substation

Segmentation Advantages

Radial Systems – Segmentation Benefits

No Alternate Feeder Ties

© 2006

Non-Uniform Segmentation Drivers

- Non Uniform Fault rates
 - Isolate the bad segments!
- Sensitive or Critical Customers
- Geography
 - Major taps or significant splits
- Loading
 - Concentrated or large loads

Impact of T-Sections

- No impact on predicted reliability calculations
- Impacts economics
 - -2 or 3 switches added for segment instead of 1
- May be required to meet feeder capacity limits

This scheme is not linear. It uses T sections with multiple feeder ties. This increases the number of switches and cost – no change in predicted reliability for Single Contingency

Economics of Reliability – cost assumptions

Economics of Reliability

- Typical overall optimized reliability improvement program cost ranges – all programs
 - \$0.67 per CMI
 - "low hanging fruit"
 - \$1.67 per CMI
 - "at end of program"
- Looped DA Costs are typically \$0.33 - \$0.76 per CMI depending on segmentation level
- Other variables will impact these costs (MTTS, MTTR, Frate, Cust, Miles, ETC)

Regulatory Penalties for Poor Reliability

- Penalties = ???
 - -\$1million per SAIDI over limit

Parameter Sensitivity

• CMI or SAIDI are sensitive to Frate, Cust, Miles, MTTR, MTTS, # Segments

 % CMI or %SAIDI Changes Are NOT sensitive to Frate, Cust, Miles but Are sensitive to MTTS and MTTR

Example System

Loop System Reliability

Substation C A В 2 3 4 N.O. 5 D Ε 6 7 **Substation SCADA Loop Auto SCADA # SEGMENTS SBD LOOP RCL LOOP** RCL DA SBD **SEG Cust * Miles** 10 Mile Feeder 2 210 165 150 135 120 10,000 4 195 128 83 60 105 5,000 **5 MILE Feeder** 2 105 135 120 97 90 5,000 4 90 67 **56** 45 83 2,500

System SAIDI Results

# Segments		SAIDI								
		SBD Radial	SBD Loop	RCL Radial	Loop RCL	Loop SCADA	Loop AUTO DA	SCADA SBD		
	1	240	240	240	240	240	240	240		
	2	225	210	180	165	135	120	150		
	3	220	200	160	140	100		120		
	4	218	195	150	128	83		105		
	5	216	192	144	120	72		96		
	6	215	190	140	115	65		90		
	7	214	189	137	111	60		86		
	8	214	188	135	109	56		83		

Reliability Improvement Issues

- Regulatory Requirements or Penalties
- Budget Constraints or Limitations
- Customer Service requirements
- Others

System % CMI Comparisons 2 segment vs. 4 segment

Reliability Improvements with DA

Reliability Improvement Costs & Benefits

What are your Drivers?

Base Case = SBD Loop with existing segmentation = # Segments

			DA Economics						Avg Cust Miles
# Segments		6 CMI Reduction	CMI Changes		DA Switch Cost	\$/CMI		FDR SAIDI	for Segmentation
	2	-20%	(120,000)	\$	50,000	\$	0.42	240	10,000
	3	-33%	(160,000)	\$	75,000	\$	0.47	160	6,667
	4	-43%	(180,000)	\$	100,000	\$	0.56	120	5,000
	5	-50%	(192,000)	\$	125,000	\$	0.65	96	4,000
	6	-56%	(200,000)	\$	150,000	\$	0.75	80	3,333
	7	-60%	(205,714)	\$	175,000	\$	0.85	69	2,857
© 2006	8	-64%	(210,000)	\$	200,000	\$	0.95	60	2,500

Economics of Reliability

CMI Reduction Costs by Changing Protection Scheme

@ Stated Segmentation Level

CMI Impact of Different Protection Schemes

■ Loop Manual RCL ■ Loop SCADA RCL

□ Loop AUTO DA

□ SCADA LOOP SBD

Incremental Reliability Improvement Cost Distributed Intelligent Automation

Feeder Design Schemes Total Cost vs. CMI Reduction

MTTR = 120 min
DA Switch = \$30,000
MTTS Manual = 90 min
DA Switch Time = < 1 min
SCADA SwitchTime = 30 min
Feeder = 1500 Cust
3.5 Miles Main Feeder
1500 Customers
Frate = 0.6 faults/mile/yr
Base Case = SBD Loop

Intelligent DA Benefits

- Intelligent DA provides 2X the reliability improvement of reclosers when compared to an SBD System
- Doubling Segmentation with DA provides 50%
 Improvement in Reliability
- Doubling Segmentation with Reclosers provides 36% Improvement in Reliability

Segmentation level for reclosers may be limited by coordination issues

