

Hydro-Québec's Distribution Automation Vision and Roadmap

IEEE T&D Conference Dallas, Texas May 2006 Georges Simard
Strategic Distribution Planning
Hydro-Quebec Distribution
Simard.Georges@hydro.qc.ca

Summary

- 1. Hydro-Québec's Distribution Automation: Project Description
- 2. Distribution Automation Roadmap: Vision and guiding Principles
- 3. Distribution Automation Roadmap: from 2005 to 2015 in 4 steps
- 4. Distribution Automation Standards Evolution
- 5. Conclusion

Hydro-Québec's Distribution Automation: Project Description

- Hydro-Québec's Distribution Automation Program includes
 - Remote control of 3750 MV switches and breakers (188 M \$ - CDN over 6 years)
- "Distribution Automation" is much more than remote controlling of switching equipment on the MV feeders
 - Hydro-Québec's roadmap expresses a vision how the actual distribution network evolves toward an intelligent distribution network, which includes:
 - Network monitoring
 - Equipment monitoring, and
 - Product monitoring

Hydro-Québec's Distribution Automation Vision

Vision

- The distribution network must become more intelligent
- Choosing to retain today's design standards and equipment, opting for small incremental changes in the way that business is done today, will result in an un-profitable future for a distribution utility.

Vision confirmed by

- CEATI's Technology Roadmap (May 2004)
- EPRI's ADA Report (June 2004)

Distribution Automation Flow of Information

DATA

(Using what?)

Voltage
Fault Currents
Load Currents
Temperature
Number of Operations
Alarms

Applications

(How?)

Voltage Control
Optimised Load Flow
Fault Location
Faulty Equipment
Power Quality Evaluation

• • •

Business needs

(Why?)

Energy Efficiency
Reliability
Distributed Resources
Power Quality
Customer Satisfaction

Distribution Automation Flow of Decision

DATA

(Using what?)

Voltage **Fault Currents Load Currents Temperature Number of Operations Alarms**

Applications

(How?)

Voltage Control Optimised Load Flow Fault Location **Faulty Equipment Power Quality Evaluation**

Business needs

(Why?)

Energy Efficiency Reliability **Distributed Resources Power Quality Customer Satisfaction**

Distribution Automation Roadmap: Guiding Principles

- The distribution network evolution must start from the actual network and gradually moves toward an intelligent grid
- The remote control infrastructure shall be used to gather network information
 - This information is needed to add intelligence to the network in order to increase its performance
- The multiple task possibilities of modern digital equipment (i.e. smart meters, digital relays, ...) should be integrated to reduce cost
- Distribution network evolution shall consider the growing interconnection of DER

Distribution Automation Roadmap: Guiding Principles

- Use transmission grid experience with automation to transpose on distribution networks (i.e. equipment, standards, ...)
- The telecommunication structure of the distribution network should evolve toward a compatible network with the transmission level
 - The ultimate goal is to develop standards (utilities with the manufacturers) defining a "Plug and Play" concept
- Distribution feeders should be seen as an extension of the substation busbar
- Distribution Automation Roadmap is influencing Hydro-Québec's R&D program

Distribution Network 2006 - 2007

Operation Center SCADA

Existing remote control

New remote control

Distribution Network 2006 - 2007

INTERNAL DEVELOPMENT

- Voltage control
- Fault location

STUDIES

- Telecommunication architecture
- Network information acquisition and management
- Distribution capacitors optimisation

Operation Center SCADA

Existing remote control

Distribution Network 2007 - 2010

- Addition of sensors for voltage control and fault location
- Gathering of information from remote control cabinet
- Addition of DER LV net metering
- Power Quality qualification
- Intelligent underground equipment

INTERNAL DEVELOPMENT

- Telecommunication architecture
- Intelligent maintenance system

STUDIES

- Automatic network reconfiguration
- Data structure

SCADA, Maintenance, Planning...

Distribution Network 2010 - 2015

TECHNOLOGIES IMPLEMENTATION

- More DER on the distribution grid
- Automatic reconfiguration
- Voltage regulator control
- Capacitors control

INTERNAL DEVELOPMENT

- Telecommunication architecture
- Intelligent system of predictive maintenance

STUDIES

- Automatic reconfiguration with DER (micro islanding)
- Demand side management

Real Time

Delayed Time

Distribution Automation Program completed

Institutional

Residential

Industrial

Customers

Distribution Network 2015 and beyond

TECHNOLOGIES IMPLEMENTATION

- Beginning of installation of Plug and Play equipment
- Implementation of integrated data and telecommunication architecture
- Demand side management

INTERNAL DEVELOPMENT

- Automatic reconfiguration with DER
- Energy exchange network

STUDIES

Energy portal for consumers

Distribution Automation Standards -Past situation

Distribution

Distribution Automation Standards - Present situation

Distribution

Distribution Automation Standards -Ideal situation

Distribution

Hydro-Québec's activities in DA/DER

- Hydro-Québec has a 2006 project to evaluate data integration software with existing sensors on its distribution test line.
- Hydro-Québec is participating to EPRI'S ADA #124.005 "First generation Integrated sensor and Monitoring system for ADA"
- Hydro-Québec is participating and influencing forums on Distribution Automation and DER
 - IEEE DA Group
 - EPRI's ADA
 - IEC TC 57 / 61850 Standard
 - CEATI's DALCM and PQIG who established a list of DA/DER projects
 - CEA Regulatory Innovation Task Group
 - Exchange with other utilities on DA/DER projects (BCHydro, Manitoba Hydro, EDF and others...)
 - Participation with CANMET (Canada Natural Resources) on DER
 - ...

Conclusion

- Hydro-Québec distribution network roadmap is adaptable and takes into account key elements such as:
 - Business needs of Hydro-Québec Distribution (HQD)
 - Available technologies and their evolution
 - Local context (i.e. Province of Quebec)
- The HQD roadmap is compatible with other industry roadmaps (CEATI and EPRI)
- Distribution Automation is the backbone of the future intelligent distribution network
- ◆ IEEE/IEC working groups must develop integrated Distribution Automation and DER standards to prepare the industry to the future intelligent Distribution Network

Distribution Strategic Planning
Asset management
Hydro-Québec Distribution Network

