IEEE VOLT VAR TASK FORCE
Basic C84.1 Considerations for Distributed Resources

Larry Conrad, Chair and Representative to ANSI C84
Special Thanks to Hawaii Electric, Kenneth Fong, and Reid Udea
Feeder voltage challenge

• Traditional C84.1 allocation of voltage range
 – All MV feeders had voltage drop
 – All secondary and services have voltage drop
 – All internal building wiring had voltage drop

• Add many small distributed resources
 – Some MV feeders may have a little voltage rise
 – Some secondary and service combinations have voltage \textit{RISE} and drop
 – Branch circuit to distributed resource has voltage \textit{RISE}

• Do we need to rethink C84.1?
Existing ANSI C84.1 Range A

Transformer from HV to MV

Apply voltage regulation here

MV distribution
4.16 kV, 12.47 kV,
24 kV, 34.5 kV
Pole mounted capacitors and
Regulators maintain voltage

Allocate 7.5% drop
Range A = +5% to – 2.5%
126 to 117 volts at MV

Allocate 2.5% drop
Range A = +5% to – 5%
126 to 114 volts at meter

Allocate 5% drop
Range A = +5% to – 10%
125 \text{Note} \, 1 \text{ to } 108 \text{ volts}

Some utilities “reallocated” this line

Note 1: Assumes 1 volt drop somewhere

LV distribution
secondary and service

LV building wiring systems
Some recent experiences

• High density rooftop solar
• Many, if not all homes on a single distribution transformer have PV
• Attempts to be net zero cause as much backflow as forward flow
• A few reports of larger demand than before due to sense of can use as much as you want
• High service voltages during sunlight hours
HECO Voltage Criteria to Accommodate DG PV and 100% RE Future

Secondary Voltage Drop/Rise Criteria: 2.5%

Primary Voltage Criteria: +/-2.5%

Substation Transformer

Service Transformer

Primary Distribution System (12kV)

(Other customers)
HECO Voltage Criteria to Accommodate DG PV and 100% RE Future

- **Tariff**
 - Voltage: ±5%
 - @ Customer Service Entrance (Secondary)

- **Primary Voltage Criteria to accommodate DG PV and 100% RE Future**
 - Previous Criteria: +/-5% for all times
 - Current Criteria
 - +/-2.5% for daytime
 - +5%/-2.5% for evening
 - Changed to accommodate Secondary Voltage drop/rise criteria
 - +2.5% Voltage Rise during Daytime for Customers with PV
 - -2.5% Voltage Drop for all times of day
Some comments from HECO

• Secondary voltage rise is a major concern and driving factor.
• HECO started requiring 95% lead (consuming vars) for all rooftop solar effective 1/1/2016 to counteract high voltage on the secondary
• Use of R and possibly X compensation is increasing on substation transformers to lower bus voltage at light loads.
• HECO is considering future volt var requirements rather than immediately installing capacitors to compensate for the additional var load. (Waiting on effects of 95%)
• Search web for Hawaiian Electric Power Supply Improvement Plans for more information.
Possible Suggestions to C84

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing</th>
<th>To Consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV systems voltage drop</td>
<td>7.5%</td>
<td>5%</td>
</tr>
<tr>
<td>MV voltage range</td>
<td>105 – 97.5 % (126-118 Volts)</td>
<td>102.5 – 97.5 % (123-118 Volts) (daytime only?)</td>
</tr>
<tr>
<td>MV-LV secondary and service to meter</td>
<td>2.5%</td>
<td>+ or – 2.5%</td>
</tr>
<tr>
<td>LV range at meter</td>
<td>105-95 % (126-114 Volts)</td>
<td>105-95 % (126-114 Volts)</td>
</tr>
<tr>
<td>Combined drop in branch and feeder inside building</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Voltage range for equipment terminals</td>
<td>105-90 % (126-108 Volts)</td>
<td>105-90 % (126-108 Volts)</td>
</tr>
<tr>
<td>Combined drop for feeder to DG</td>
<td>None</td>
<td>-3%</td>
</tr>
<tr>
<td>Preferred operating range for DG</td>
<td>105-90 (126-108 Volts)</td>
<td>108-90% (130-108 Volts)</td>
</tr>
</tbody>
</table>
Open Discussion

- Questions
- Is it time to broaden the discussion to North America?
- Should this be in 1885?
- Should C84 take this under consideration?