New Architecture of the Distribution System Using Electronic Transformer

Presented to ESMO-2000 Panel on Distribution Transformer, Breakers, Switches and Arresters October 9, 2000

Presented by:

Roger Bergeron Researcher Appareillage Électrique

Contributors:

Karim Slimani Researcher Appareillage Électrique

Louis Lamarche Researcher Communication System

Bruno Cantin Researcher Communication System

Issues Addressed

- Present practice
- New concept
- Economical issue

Present Practice: Power System for Residential Area

- Main MV feeder (underground or overhead)
- Local MV feeder: looped single phase
- MV-LV 100, 167-kVA Transformers (10 to15 customers/tx)
- LV radial 120/240 V network
- Cable drop

Present Practice: Underground Infrastructure

New Concept of Low-voltage, Threephase, 600-V Looped Network

Medium-voltage system located in peripheral of living area

Proposed simplified infrastructure for underground

- Simplified cable plow approach with 1 cable (no trench to dig)
- Simplified connection box in two sections (power and multimedia)
- Each connection box serves two houses.

Combined Utilities to Houses

Cable Plow

- > Up to 3 inches
- > Up to 42 inches deep
- Speed action with vibration

Other Approaches Used in European Countries

Sidewalk Approach

Electronic Transformer at the Main Entrance

Example of Electronic Transformer Topology

Why Intermediate Voltage Approach?

- It reduces the cable diameter in the trench. Modern cable plow can bury up to 3-inch diameter cable.
- Reduces the MV system and the related hardware.
- Simplifies the maintenance and the operation.
- Reduces the cost by 50%.

Economical issue for 247 customers

Type of power system	Actual practice (\$)			New approach (\$)		
Description	Quantity	Electrical	Infrastructure	Quantity	Electrical	Infrastru
Main transformer	17 X 100 kVA, 6 X 167 kVA	133 067	59 800	1 X 2,5 MVA	55 167	8 000
Electronic transformer	Not applicable			247 xfo	141 360	37 200
				25 kVA	111000	0. 200
MV cable in living area	4 834 m	119 489	152 892	0.00 \$		
Low-votlage cable	6 010 m	182 125	256 256	6500 m	191 000	54 975
Connectors	476 barres	84 496		494 con	3 458	
Cable drop	6000 m	311 243	295 412	5 115 m	265 334	24 618
Low-votlage protection	Not used			6	13 000	
Total		830 420	764 360		669 319	124 793
Grand total		1 594 780		7	94 112	
Difference	-50%					
Cost per customer	6 457\$			3 215\$		

OPRESTIGE Mai 2000 .

Conclusions

- Simplification of cable plow that speeds the construction
- Reduction or elimination of MV system in living area resulting to reliability improvement
- 600-V system up to the house with the electronic transformer,

Conclusion

- Reduce the coordination between utilities during the construction
- Supply the three phase for apartment or commercial building
- → Important cost reduction

Questions ..