Application of Customer Exposure Ratio to Distribution Circuits

Written By: Ryan A. Melbard Presented By: Val G. Werner

We Energies

Introduction

- Customer Exposure Ratio (CER)
 - Utilities can use CER to compare how well a circuit is sectionalized compared to their average circuit
 - Utilities can create a list of circuits that could benefit from extra protective devices for the purpose of improving reliability
 - Utilities can determine the optimal placement of protective devices on circuit using CER to improve reliability
 - Aids in determining where investment in protective devices have the largest reliability improvement
 - Based on Load Exposure (LE) concept
 - LE is a measure of the average interruption exposure for customers on a particular circuit
 - Typically
 - Circuits with high LE indices will have higher SAIFI
 - Circuits with low LE indices will have lower SAIFI

Load Exposure

Device Level – Product of the number of customers fed through the protective device and the length of the circuit to which the device is exposed.

Circuit Level – Summation of the Load Exposures of all devices on the circuit

Load Exposure – Examples

 $(N_A + N_B)$ Customers

$$\begin{split} LE_{circuit\ w/o\ recloser} &= LE_{bkr} = \left(N_A + N_B\right)\!\!\left(L_A + L_B\right) \\ LE_{circuit\ w/o\ recloser} &= LE_{bkr} = N_AL_A + N_AL_B + N_BL_A + N_BL_B \\ LE_{circuit\ w/recloser} &= LE_{bkr} + LE_{recl} = \left(N_A + N_B\right)\!\!L_A + N_BL_B \\ LE_{circuit\ w/recloser} &= LE_{bkr} + LE_{recl} = N_AL_A + N_BL_A + N_BL_B \end{split}$$

Load Exposure Limitations

 $LE = L \times N = 10 \times 100 = 1000 \text{ Customers Miles}$

 $LE = LE_{bkr} + LE_{recl} = (N_A + N_B)L_A + N_BL_B = (100+200)2 + 200 \times 2 = 0$

1000 Customers Miles

Customer Exposure Ratio

- Customer Exposure Ratio (CER) is used to normalize load exposure
- CER is calculated by dividing the circuit's LE by the circuit's largest possible LE

 LE_{MAX} = Circuit Total Miles x Circuit Total Customers

$$CER = \frac{LE_{actual}}{LE_{max}}$$

Understanding CER

- A circuit with a CER equal to 1 indicates
 - The circuit only has the substation protection device
 - The circuit has no additional line protection devices, such as fuses or reclosers
- A lower CER indicates the circuit is better sectionalized
 - It does not necessarily signify that one circuit has more fuses or reclosers than another circuit
 - It does indicate the protective devices are more effectively located

CER – Examples

LE vs. CER

- LE measures exposure of the circuit
- CER measures the protection on the circuit
- LE is measured using the units of Customer-Miles
- CER is a value between 0 and 1 without units
 - Values close to 1 indicate few or no protection devices
 - Values close to 0 indicate a high degree of sectionalization or well-placed protection devices

Additional CER Uses

- CER can be used to estimate the number of customers that might experience interruptions due to a fault on the circuit
- More specifically, CER can be used to determine the average number of customers affected per interruption event
- The average number of customers per interruption event = CER x (the total number of customers on the circuit)

CER Assumptions

- There is an equal probability of a fault occurring anywhere on the circuit
- All faults are permanent
- All faults are three-phase faults
- All devices operate all three phases
- All lines contain three phases
- Despite these assumptions, CER can be used to provide a quick theoretical estimate of the amount and effectiveness of the protection on a circuit

Average Number of Customers Affected per Interruption Event

- The probability of the fault occurring in a particular part of the circuit is the Length of that segment divided by the circuit's total length
- The probability of a fault in either the first or second part of the circuit is 50% or 0.50

Average Number of Customers Affected per Interruption Event

- For a fault on the first part, 300 customers out
- For a fault on the second part, 200 customers out
- Expected number of customers out:

$$0.50(300) + 0.50(200) = 250$$
 Customers

Using CER:

0.8333(300) = 250 Customers

CER – Applications

(Based on Actual Utility Data)

Bands of Equal Number of Customers per Outage

Using the CER Information from the Chart

- Identify circuits that require more sectionalization, which may allow for better prioritization of projects
- Identify circuits that have too much sectionalization or could use reconfiguration
- Pinpoint circuits where additional spending and reconfiguration would not provide significant improvement in reliability

Number of Circuits by CER Range and Cumulative Percentage

Percentage of Circuits with Unacceptable Reliability Performance within each Band of Customers per Outage

Optimal Recloser Location

- Required: Circuit model with customers located in the model
- For a single circuit
 - Apply recloser in several locations on the circuit model
 - Based on rules of thumb or tribal knowledge or
 - Every possible location
 - Choose the location that results in the greatest improvement in CER

Summary

- Modern mapping programs could allow utilities to quickly calculate the LE and CER for circuits
- Utilities can use CER to compare how well a circuit is sectionalized compared to their average circuit
- Utilities can create a list of circuits that could benefit from extra protective devices for the purpose of improving reliability
- Utilities can determine the optimal placement of protective devices on circuit using CER to improve reliability
- The protective devices could come from circuits that are deemed to be "over-protected", i.e. have a very low CER

Questions?

