Understanding Manhole Events

Stuart Hanebuth
Vice President
Power Survey Company
Kearny, NJ
www.PowerSurveyCo.com
Manhole Events

• Smoking manholes
• Manhole fires
• Manhole Explosions
Manhole Event Sources

• Low voltage cable is the source of >95% of manhole events\(^1\)
 – Generally initiated at point of damaged cable insulation
 – Most frequently are “Chemically Driven Events”
 – Large potential fuel source from cable insulation
 – Toxic and flammable gases produced during decomposition of insulation

• Transformer, Transmission and Primary Failures are the source of <5% of events
Low Voltage Cable Insulation Failure Outcomes

- Majority of failures result in power quality and contact voltage related issues
- Smoking manholes are the most frequent type of manhole event
- If an ignition source is present, a smoking manhole can progress into a manhole fire or explosion
Two Types of Manhole Explosions

• Chemically Driven Events
 – Represent majority of manhole explosions
 – Low current electrical fault decomposes cable insulation
 – Energy released is from decomposition products of the insulation

• Electrically Driven Events
 – Energy released is from electrical fault
Protective Systems

- **Limiters**
 - Designed to protect adjacent sections from thermal overloads during three phase faults\(^8\)
 - Typically limit in the 1,000-5,000 amp range
 - Not generally effective in preventing or mitigating gas producing faults

- **Arc fault detection**
 - Most sensitive systems in the 5 amp – 50 amp range\(^7\)
 - May not be able to detect gas producing faults

Secondary System Events Associated with Low-Voltage Cable Failure

- **Event Type**
 - Service Interruption
 - Manhole Fire / Manhole Explosion
 - Smoking Manhole / Collateral Damage

- **Contact Voltage**
 - Fault Current
 - Mobile Contact Voltage Detection
 - Arcing Fault Detection
 - ~ 18 mA
 - ~ 25 A
 - ~ 5 kA
 - Limiters
Chemistry – Low Voltage Cable Events

- A variety of materials have been used for low voltage cable insulation:
 - Paper Insulated Lead (PILC)
 - Kerite
 - Styrene Butadiene Rubber (SBR)
 - Butyl Rubber
 - Neoprene
 - PVC
 - EPR
- Variety of duct materials have been used:
 - Wood
 - Cellulose-Tar
 - Concrete
 - PVC
- As these materials decompose they can produce flammable gases:
 - Carbon Monoxide
 - Hydrogen
 - Methane
Collateral Damage Concerns

- Injury to public and employees
- Primary damage from low voltage faults
- Damage to nearby natural gas facilities
- Building explosions from carbon monoxide accumulations
Event Prevention Strategies

• Post installation testing5
• Duct sealing to minimize airflow6
• Filling manholes with inert materials to minimize gas accumulation
• Contact voltage testing to find incipient faults7
Visual Inspections

• Analysis of over 55,000 visual inspections found small reduction in secondary related events such as:
 – Smoking manholes
 – Contact voltage
 – Power Quality Events

• No reduction in manhole fires or explosions
Mitigation Strategies

• Several cover designs and restraining approaches have been implemented10
 – Tethering
 – Self restraining
 – Venting

• Deployment strategies not well established
 – Is 100% installation the optimal approach?
 – High density areas
 – Dense structures
 – Duct or Cable driven installation

• Analysis needed on impacts of deployment
 – Water
 • Primary Joints
 • Customer basements
 – Debris accumulation
 – Access
 – Civil design
 – Increased duct airflow
Conclusion

• Low voltage cable failures are at root of most of these events
• Need wider focus than simply mitigating manhole events, also need to consider:
 – Prevention
 – Early detection
 – Maintenance
 – Response
• Field open for quantitative analysis of early detection and mitigation methods
• General need to define common terms to discuss the issue
Bibliography

Cited References

5. J. Côté, “Manhole Explosions Discussion Group Hydro-Québec Experience”,

Relevant but not cited references