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Agenda

• Introduction

• Incipient fault characteristics with field-recorded 
illustrations

• Detecting re-occurring incipient faults

• Conclusions 
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Research Roadmap: Intelligent Solutions

Incipient faults has been an R&D&D topic for many years 

• 2013-2016 (condition-based control applications)

• 2011-2013
– Time-tagged sensor data and derived intelligence: 

integration into control center 

– Use of sensor data for real-time feeder performance, 
asset management, grid analytics, and modeling 
funded in part by DOE

• 2010-2011
– Focus on multi-IED feeder and station intelligence 

applications for substation servers

• 2008-2009
– Focus on high-end feeder intelligence applications 

embeddable in IEDs or substation servers in-line with 
the advent of Smart Grids.

• 2007&prior
– Focused primarily on low-cost modules for analysis of 

non-operational data e.g. disturbance data for 
providing feeder intelligence (e.g. breakers, batteries, 
lines/cables, IEDs, and feeder components)
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• Taps into available data from IEDs (32 spc min. res.)

• No new sensors/CTs/PTs required

• Real-time and automated analysis of disturbance 

records from field IEDs

• Detection and Control Center notification within 

seconds with the end-to-end process fully 

automated
• End-User value

• Knowledge: situational awareness (WWWWH)

• Enables incipient fault/abnormality detection

• Faster outage detection and notification e.g. fuse-cleared 

faults

• Reduces OK-on-arrival truck rolls

• Confirmation of switching events, power on, and power off 

• Field verified and validated algorithms 
• Available for pilot deployment in IEDs, substation 

automation controllers, and integration with 
control center

Data Acquisition and Processing Flow
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• Feeder Fault (Type I)

Case # 955 in MDB 
DFEVAS OMS 

Predicted Actual 

Time of Event 12/13/2008, 7:44 AM 12/13/08 8:02 AM 

Substation XYZ XYZ 

Feeder Number 1234 1234 

Phase B B 

Event Classification 
Short-duration 

Feeder Fault (High) 
Cable Fault 

Infrastructure UG (80%) UG 

Equipment Category N/A Cable 

Clearing Device Fuse Fuse 

Clearing Device Size 
[10A,65A] 

[40A,0.981]  
40A 

Cause of Failure N/A Cable Failure 

Location PMZ, Segment X Primary Feeder 

Time of Restoration N/A 9:45AM 
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Filename: DPU-LS2-081213-074419061.cfg
Trigger Date: 12/13/08
Trigger Time: 07:44:19.610000
Faulted Phase: b
Peak Phasor Fault Current (A RMS): 1232
Peak Inst. Fault Current (A): 2485
Fault Duration (cycles): 0.781
Load Change (kW): -41

Prefault Loading
 Phase: A; B; C:
   Current (A):   366;    296;    328
   Power (kW):  2831;   2250;   2539
   Power Factor: 0.967;   0.951;   0.97
 Voltage (kV RMS): 8
Postfault Loading
 Phase: A; B; C:
   Current (A):   364;    290;    326
   Power (kW):  2822;   2209;   2528
   Power Factor: 0.967;   0.95;   0.97
 Voltage (kV RMS): 8

Operator Message: 

•A Cable Fault event on B 
phase has just been detected 
on Primary feeder 1234 out of  
XYZ substation on Dec 13, at 
7:44AM that could have been 
cleared by a 40A fuse (Rel. 
probability: High).

IED

Adjacent Zone

Primary ZoneUpstream Zone

Comprehensive Analysis, Detection, and Assessment
What/When/Where/Why/How (Available in Substation Controller)



Illustrative Case #1
Incipient fault lasting 9+ months

Initial Incipient Fault 
September 11, 2007

02:42 PM

• Ifault = 422 A RMS

• No outages or customer 
calls

139 Incipient Faults 
thereafter

• Ifault = 100’s – 1000’s A 
RMS

• Multiple faults per day

Permanent Fault 
June 14, 2008

12:19 AM

• Ifault = 2626 A RMS

• Customer call
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Filename: DPU LS1 070911 144232023.cfg
Trigger Date: 09/11/07
Trigger Time: 14:42:32.230000
Faulted Phase: a
Peak Phasor Fault Current (A RMS): 422.3
Peak Inst. Fault Current (A): 1287.5
Fault Duration (cycles): 0.219
Load Change (kW): 7

Prefault Loading
 Phase: A; B; C:
   Current (A):   124;    119;    128
   Power (kW):  962;   938;   1012
   Power Factor: 0.986;   0.983;   0.989
 Voltage (kV RMS): 7.96
Postfault Loading
 Phase: A; B; C:
   Current (A):   125;    118;    130
   Power (kW):  969;   933;   1025
   Power Factor: 0.984;   0.981;   0.989
 Voltage (kV RMS): 7.96
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Filename: DPU-LS1-080614-001906046.cfg
Trigger Date: 06/14/08
Trigger Time: 00:19:06.460000
Faulted Phase: a
Peak Phasor Fault Current (A RMS): 2626
Peak Inst. Fault Current (A): 4954.7
Fault Duration (cycles): 0.875
Load Change (kW): 52

Prefault Loading
 Phase: A; B; C:
   Current (A):   77;    90;    100
   Power (kW):  591;   704;   774
   Power Factor: 0.981;   0.981;   0.974
 Voltage (kV RMS): 7.94
Postfault Loading
 Phase: A; B; C:
   Current (A):   92;    89;    102
   Power (kW):  643;   695;   788
   Power Factor: 0.892;   0.978;   0.973
 Voltage (kV RMS): 7.94



Illustrative Case #2
Incipient fault lasting 3 hours

•1108A RMS

•No outages or customer calls

Initial “C” Phase Incipient Fault March 8 at 6:05:55 PM

•1600 – 2438A RMS

•Generally less than ½ cycle

6 Single blips thereafter

•2776-4274A RMS

•Over a few non-contiguous cycles 

9 Multiple blips thereafter

•4077A RMS followed by a customer call

Permanent fault captured

March 8 at 9:07:53 PM



Illustrative Case #3 
Primary zone: Evolving fault

• A phase-A fault evolves into a phase-B fault
• No OMS data!



Illustrative Case #4
Incipient Fault leads to a Permanent O/H Fault

• 2564A RMS

• No outages reported around that time

• Cause was tree inside maintenance Corridor

• Feeds traffic and street lighting

“A” Phase Fault on Jan 31 @ 12:04:59 AM

Outage registered 7:41AM

Opportunity to fix the problem before an outage call

Current waveforms

Voltage waveforms
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Avoiding False Positives

• Example of proper cable fault detection

• Examples of ‘false positives’

– Inrush

A B



Incipient Fault Characteristics 
Solidly-grounded Circuits

Common Characteristics: magnitude, duration, inception angle, 
harmonics, long and short term trends (not exhaustive)
• Do not draw sufficient current for O/C protection
• Do not last sufficient enough for coordinated O/C protection
• Fault duration on an average less than half a cycle.
• Peak fault current could be multiple times the RMS load current 
Harmonic analysis not necessarily required.

• Increasing trend in the normalized instantaneous peak fault current 
towards eventual fault time

• Increasing trend in 0th, 2nd, and 3rd harmonic. 
• Fault inception angle close to 0 degrees w.r.t. voltage peak
• Intermittent on/off behavior 
• Could persist for as little as hours 



Recording begins on 
August 19

• First case of incipient fault 
recorded on September 11 

• Current Peak- 1287A Duration-
0.22 cycles

• No Records on Utility Outage 
System

• A catastrophic failure 
occurred on June 14

• 65 A Fuse blown

• Peak Current – 5000A

After 139 
repetitive 
incipient 
faults over 
9+ months!

Illustrative Example: Splice failure 



View of the catastrophic failure

Close-up view of erosion of 

splice body
The center splice body is a non-faulted 

splice from the same location on different 

phase, this splice is in good condition.
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Note: This plot represents the absolute value of peak.
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Time Domain Analysis

Peak FAULT CURRENT by Polarity

Polarity not a significant determining factor for fault initiation.

Peak Abs. FAULT CURRENT
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Note:  The absolute value of peak instantaneous fault current has been 

normalized with respect to the load rms current.                       
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Note: First two cycles have been used to calculate the nominal load current.

RMS LOAD CURRENT

• Peak fault current is 5-6
times the RMS load current

Time Domain Analysis

• See progressive trend 
towards failure
• repeated faults compromise 
insulation integrity

• Normalized instantaneous peak fault current has an increasing trend.



09/11/07 10/31/07 01/31/08 03/22/08 06/13/08
0.25

0.3

0.35

0.4

0.45

0.5

D
u
ra

ti
o
n
 (

c
y
c
le

s
)

Arrival Time

09/11/07 10/31/07 01/31/08 03/22/08 06/13/08
-15

-10

-5

0

5

10

P
h
a
s
e
 D

if
fe

re
n
c
e
 (

d
e
g
re

e
)

Arrival Time

Note: Phase refers to the angle of fault initiation w.r.t the nearest voltage peak.

• Duration lies 

between 0.25-0.47 cycles- not
picked up by conventional relay
algorithms.

INCEPTION ANGLE w.r.t.
voltage peak

DURATION

Phase difference close to 0, 
averages around -1.16 degrees

Time Domain Analysis
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• Inter-arrival Time – demonstrates intermittent on/off behavior

INTER-ARRIVAL TIME

Time Domain Analysis
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Note: Harmonic Currents have been

normalized with respect to the

fundamental current over the fault cycle.
• Even harmonics generally 
appear with higher magnitudes 
than that of odd harmonics –
sub-cycle duration.

Frequency Domain Analysis

• The 2nd Harmonic is
dominant.

ODD HARMONICS

EVEN HARMONICS
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• DC, Fundamental, 2nd and 
3rd harmonic normalized 
currents generally have a 
positive correlation with the 
failure. 

• They may be used as 
symptom parameters, 
although implementation 
details would vary.

•Fundamental suffices in 
most cases! 

Frequency Domain Analysis



• Available feature in feeder protection IEDs

• Detecting an individual instance of an 
incipient fault

• Applies to both O/H, U/G, and mixed 
feeders with incipient, fuse-cleared, or 
self-cleared faults 

• Analog inputs

– Phase currents – Ia, Ib, Ic

• Logical inputs

– Block – on/off control of module

• Internal logic

– Per-phase CFD counters - sc_a, sc_b, sc_c

• Logical outputs

– Cable fault detection – SCFDDetect

– Three-phase cable fault event detected –
EventDetect_3ph

– Expanding number of logical outputs

– Map to trigger DFR

SCFDAnalysis (SRC 

Core)

SCFDDecision (SRC 

Core)
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Incipient Fault Detection in IEDs

Analysis Block

Decision Block
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Benefits

• Primary value of incipient fault detection is knowledge, i.e., 
dispatchers will know what they didn’t previously know 
when a feeder fault occurs that is either self-clearing or are 
cleared by non-communicative device, e.g., reclosers or 
switches, or unintelligent device, e.g., fuse

• Algorithm is able to detect incipient and permanent faults 
on overhead and underground feeders that are solidly 
grounded (ANSI type)

• High ease of use factor with feature available in feeder 
protection and control relay eliminating need for extra or 
unique instrument transformers (CT, VT) or system sensors



Detecting the Long-term Trend

• Incipient faults do not cause outage until they lead to 
permanent faults

• A series of repetitive occurrences is a major sign of an 
impending failure

• Detecting individual incidents of an incipient activity is a 
prerequisite step for alarming (necessary but not sufficient)

• Just-in-time alarming to avoid or manage an unplanned 
outage requires active monitoring over the activity period

• Could be hours, days, or weeks depending upon many stress 
factors including thermal and electrical

24



Detecting The Long-term Trend
Human-in-the-loop Approach

• Keep a daily count of detected incipient activities 

• Initiate mitigation plans by intuition after a certain number of 
occurrences register in a given period

• Pros
– Simple approach

– works for one-off situations

– Lower deployment barrier

• Cons
– Not scalable

– Not sustainable due to operator fatigue 

– Prone to operator shift changes

– Has to be standardized across the system 

25

• Effective automated 

techniques are required 

for just-in-time detection 

and alarming.

• Alarming should be 

based on risk tolerances 

(trade-off between 

missed detection and 

early warning)



Gained Experience-Other

• Be mindful of benefits misalignment if Operations are siloed from 

Engineering/Standards. Significant value for this kind of technology is realized at 

the company level. 

• Over 90% of incipient and permanent faults occurred on laterals

• Detection and location is harder on laterals

• Do not cause breaker trips and SCADA alarms

• Integration with DMS/Control Center is required to make operational impact. 

• Sub-cycle and incipient fault location remain an industry challenge although some 

methods recently have been reported!

• Need to deal with feeder modeling inaccuracies for detection and localization

• Bad connectivity data

• Incorrect phasing

• Missing information (conductor length, size, material)

• As-built vs. as-operated models
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