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[bookmark: _Toc345363939][bookmark: _Toc514428211]INTRODUCTION
Many equipment failures such as the arcing of a cable joint, restrike of a capacitor switch, and tree-contact by a power line can produce unique electrical signatures. These signatures can be observed from the voltage and current waveforms associated with the equipment. In recent years, engineers and researchers in the field of power quality, power system protection, and equipment testing have realized that useful information can be extracted from the waveforms for the purpose of equipment condition monitoring. In the field of power quality, for example, power quality monitors routinely collect power disturbance data. Some of the data do not indicate the existence of a power quality problem but they have been used to detect the presence of abnormal equipment operation in the system.
How to analyze the waveform-type power disturbance data and extract information for purposes such as equipment condition monitoring has attracted a good interest from industry and academia recently. In view of the wide availability of power quality or other waveform based monitors and the advancements in power disturbance analysis methods, the IEEE Power Quality Subcommittee formed a Working Group in 2013 to prompt the research, development and application of power disturbance data for purposes beyond the traditional power quality concerns. Here a power disturbance is defined as a transient or persistent deviation from the sinusoidal voltage or current waveforms. The working group is named “Power Quality Data Analytics”. Power Quality Data Analytics can be considered as the discipline that specializes in collecting waveform-type power disturbance data, extracting information from it, and applying the findings to solve a wide variety of power system problems. Detecting equipment failures is one of the areas with significant potentials for PQ data analytics.
This report is prepared to support the application of PQ data analytics to equipment condition monitoring. Its primary goal is to share the signatures of various equipment failures so that researchers can develop appropriate algorithms to identify equipment abnormality from the voltage and current waveforms. The second goal is to provide a historical review on the evolvement of power quality monitoring, as significant similarities exist between the detection of disturbances that cause power quality problems and the detection of disturbances that reveal equipment failures.
This report is organized as follows. 
· Section 2 provides a brief overview of various disturbances that are of concern to power quality. This information will facilitate the understanding and explanation of equipment failure disturbances in the next section;
· Section 3 presents various electrical signatures associated with equipment failures. The main characteristics of the signatures are discussed. The similarities and differences in developing indices for power quality monitoring and for equipment condition monitoring are discussed;
· Section 4 discusses the first step towards signature-based condition monitoring, i.e. the detection of power disturbance containing waveforms. Such waveforms are called abnormal waveforms in this report. This section presents an overview of the published methods. It also illustrates a practical method to demonstrate the characteristics and challenges of abnormal waveform detection. Finally, a recent development in this direction is presented. The overall objective of this section is to promote and foster the development of rigorous and general-purpose methods for abnormal waveform detection. 
· Section 5 presents a summary of the report and the main conclusions.
[bookmark: _Ref502845878][bookmark: _Toc514428212]SIGNATURES OF POWER QUALITY DISTURBANCES
Before presenting the signatures of equipment failures, it is useful to have a brief overview of the signatures of power quality disturbances. Power quality disturbances are those electrical disturbances that can lead to power quality problems. Equipment failure may or may not result in a disturbance of concern from the power quality perspective.
Over the past 30 years, significant progresses have been made in the PQ field. There is consensus on definitions, characteristics, and indices of various power quality disturbances. Standards for disturbance detection and characterization have also been established. According to IEEE 1159-1995, power quality disturbances are classified as shown in Table 1. Sample signatures of the most common power quality disturbances are shown from Fig. 1 to Fig. 3.
Power quality disturbances are characterized by using indices that focus on the severity of a disturbance (see Table 2). For disturbances that occur as individual events (called transient disturbances in Table 2), the indices are magnitude and duration. For steady-state disturbances such as harmonics and voltage unbalance, the indices are magnitude only. For disturbances that occur intermittently such as voltage flicker, the frequency of occurrence has been used as another severity index.
	[image: ]
(a) impulsive transients
	[image: ]
(b) oscillatory transients


[bookmark: _Ref502757651]Fig. 1. Signature of voltage transients.

[bookmark: _Ref502756900]Table 1. Classification of power quality disturbances.
	Categories
	Typical spectral content
	Typical duration
	Typical magnitude

	1. Transients

	Impulsive
Oscillatory
	5 ns - 0.1 ms rise
0.5 MHz - 5 kHz 
	1 ns - 1 ms plus
5 us - 50 ms
	
0 - 8 pu

	2. Short duration variations

	Interruptions
Sags
Swells
	
	0.5 cycle - 1 min
0.5 cycle - 1 min
0.5 cycle - 1 min
	< 0.1 pu
0.1 - 0.9 pu
1.1 - 1.8 pu

	3. Long duration variations

	Sustained interruptions
Under-voltages
Over-voltages
	


	>1 min
>1 min
>1 min
	0.0 pu
0.8 - 0.9 pu
1.1 - 1.2 pu

	4. Voltage fluctuations
	<25Hz
	Intermittent
	0.1 - 7%

	5. Power frequency variations
	<10s
	

	6. Voltage imbalances
	Steady state
	0.5 - 2%

	7. Waveform distortions
	0 - 50th harmonics
	Steady state
	0 - 20%
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(a) sag
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(b) swell
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(c) interruptions


Fig. 2. Signature of short duration variation disturbances (voltage signals).

	[image: ]
(a) impact of a DC component
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(b) impact of a subharmonic component
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(c) impact of a harmonic component
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(d) impact of a interharmonic component


[bookmark: _Ref502757655]Fig. 3. Signature of voltage waveform distortions (harmonics and interharmonics).

[bookmark: _Ref502846105]Table 2. Basic indices to characterize power quality disturbances.
[image: ]

It is very important to note that most power quality disturbances manifest as changes to the voltage waveforms. As a result, PQ indices are developed mainly for the voltage waveforms. As will be seen in the next section, the signatures of equipment failures are mainly observed from current waveforms. They exhibit a wide variety of characteristics.
[bookmark: _Ref502845883][bookmark: _Toc514428213]SIGNATURES OF EQUIPMENT FAILURE DISTURBANCES
This section presents the electrical signatures of various utility equipment failures, including waveforms and RMS plots of the voltages and currents. The data and charts are collected from various literatures and their authors are acknowledged. If there is no additional information, all data shown here are collected from substation-based feeder CTs and bus PTs. Substation is probably the most feasible location for general purpose, disturbance data-based equipment condition monitoring.
[bookmark: _Toc514428214]Cable Failures
Most utilities possess a lot of power cables. Since many of the cable systems are aging, failures are getting more and more common. Medium voltage underground cables may show signs of incipient faults before permanent failures occur. Incipient faults show one or more current pulses whose magnitude depends on the location of the fault and the location on the voltage waveform when the fault starts [1]. Incipient faults typically do not require the operation of protective devices; they are usually self-clearing. A common cause of such fault type is the cable insulation breakdown caused by moisture penetration into cable splices. The self-clearing nature of such faults is associated with the fact that, once an arc is produced (insulation breakdown), water is evaporated, and the resulting high-pressure vapors extinguish the arc. Electrical trees, chemical reaction and partial discharge are other common causes of incipient faults [2].
(1) Incipient Faults on Primary Cable 
In this subsection, cases of sub-cycle incipient faults, multi-cycle incipient faults and sub-cycle faults followed by multi-cycle faults are presented and analyzed. Fig. 4 shows two instances of self-clearing incipient fault, whose durations are less than one cycle. 
The current waveform during a single-phase incipient fault on phase-C of a 13.8 kV underground feeder is shown in Fig. 5. This fault originated from an incipient failure of an XLPE cable, and lasted ½ cycle, with a 2.7 kA peak fault current.
The current waveform during multiple single-phase incipient faults on phase-B of a 27 kV feeder is shown in Fig. 6. These faults originated from an XLPE cable failure, and lasted ½ cycle each, with roughly 3.1 kA peak fault currents.
Unlike the examples shown from Fig. 4 to Fig. 6, Fig. 7 shows a multi-cycle incipient fault which is also a single-phase fault and lasts about two and a half cycles. 

	[image: ]
(a) self-clearing fault lasting about one-quarter cycle [3] (© 2010 IEEE)


	[image: ]
(b) self-clearing fault lasting about one-half cycle [4] (© 2010 IEEE)


[bookmark: _Ref502846229]Fig. 4. Two instances of self-clearing incipient faults.
[image: Figure_1_2]
[bookmark: _Ref502846316]Fig. 5. Single incipient single-line-to-ground fault [1] (© 2013 CEATI).
[image: Figure_1_3]
[bookmark: _Ref502846392]Fig. 6. Multiple incipient single-line-to-ground fault [1] (© 2013 CEATI).
[image: ]
[bookmark: _Ref502846463]Fig. 7. Multi-cycle self-clearing incipient fault [3] (© 2010 IEEE).
After a number of such events during several hours or months, the incipient faults may turn permanent, causing overcurrent protective devices to operate [5]. Fig. 8 shows two incipient faults followed by a permanent fault on the same phase. 
[image: Displacement1]
[bookmark: _Ref502846573]Fig. 8. Incipient faults followed by a permanent fault [5] (© 2014 IEEE) (a) (b) Incipient faults on 2008-11-12 at 19:40 and 2008-11-12 at 21:11, respectively. (c) Permanent fault on 2008-11-14 at 15:51.
Fig. 9(a) shows the first instance of a series of incipient faults that occurred in a 1000mcm cable run. Its fault current was 1108 A RMS and no outages or customer calls resulted. After this initial Phase-C incipient fault happened, the cable run experienced 6 single blips whose fault current lied between 1600-2438 A RMS with the fault duration being less than a half cycle. Then, nine multiple blips occurred whose fault current was between 2776-4274 A RMS. Fig. 9(b)-(c) present the illustrative examples of single blip and multiple blip, respectively. About three hours after the first incipient fault, a permanent fault happened and resulted in a sustained outage. The recorded current waveform of the permanent failure is shown in Fig. 10.
	[image: ]
(a) initial incipient fault
	[image: ]
(b) single blip

	[image: ]
(c) multiple blip


[bookmark: _Ref503000534]Fig. 9. Incipient failures.

[image: ]
[bookmark: _Ref503000607]Fig. 10. Permanent failure.
Fig. 11 presents another interesting event. This figure illustrates the last phases of the cable failure process, where the frequency of incipient faults has increased. After the first three incipient faults, a permanent fault occurred. Durations of the incipient faults are all between half and one cycle, while the duration of the permanent fault is about two cycles [5].
[image: Displacement2]
[bookmark: _Ref502846622]Fig. 11. Incipients faults followed by a permanent fault [5] (© 2014 IEEE).
The voltage and current waveforms shown in Fig. 12 outline the occurrence of an incipient fault on phase-A of a 27 kV underground feeder, followed by a second fault due to PILC cable failure. Both faults durations and magnitudes were ½ cycle and 3.0 kA, followed by 3 cycles and 3.7 kA.
[image: Figure_1_5]
[bookmark: _Ref502846670]Fig. 12. Incipient fault followed by a multi-cycle fault [1] (© 2013 CEATI).
The current waveform shown in Fig. 13 outlines an incipient fault on a 12 kV feeder, followed by a second fault resulting from an underground cable failure. Faults durations and magnitudes were ½ cycle and 5.7 kA, followed by 2½ cycles and 5.4 kA.
[image: Figure_4_22]
[bookmark: _Ref502759668]Fig. 13. Underground cable failure incipient fault [1] (© 2013 CEATI).
The voltage and current waveforms shown in Fig. 14 outline an evolving cable failure fault on a 13.8 kV feeder. Initially, one can observe a 2½ cycle single-phase fault on phase-A, with 3.3 kA magnitude. This fault then evolves to a 5-cycle phase-to-phase fault between phases A and C, with 5.3 kA magnitude.
	[image: Figure_4_26]
(a) voltage waveforms
	[image: Figure_4_25]
(b) current waveforms


[bookmark: _Ref502846904]Fig. 14. Voltage and current waveforms during an evolving cable failure [1] (© 2013 CEATI).
The current and voltage waveforms during a sequence of two events on a 27 kV feeder are shown in Fig. 15. It outlines an incipient fault on phase-A, followed by a second fault due to XLPE cable failure. The faults durations and magnitudes were ½ cycle and 2.2 kA, followed by 3½ cycles and 2.6 kA.
[image: Figure_5_12]
[bookmark: _Ref502846935]Fig. 15. Electrical waveforms during an underground PILC cable failure [1] (© 2013 CEATI).

(2) Incipient Faults on Primary Cable Joint
The current waveform during a self-clearing fault on a 27 kV underground system is shown in Fig. 16. This fault originated from excessive moisture in cable joint, and lasted ½ cycle, with a 3.8 kA peak magnitude on phase-B.
[image: Figure_4_19]
[bookmark: _Ref502846970]Fig. 16. Incipient cable joint fault [1] (© 2013 CEATI).
The voltage and current waveforms during an incipient fault on phase-A of a 27 kV feeder are shown in Fig. 17. This fault originated from a XLPE-to-EPR cable joint failure, and lasted ½ cycle, with a 2.3 kA peak current.
[image: Figure_5_9]
[bookmark: _Ref502847006]Fig. 17. Incipient cable joint failure single-line-to-ground fault [1] (© 2013 CEATI).
Another incipient cable fault record is can be observed in the current waveform presented in Fig. 18. It has occurred on phase-A of a 12.7 kV feeder, with a peak current above 3.0 kA and duration of less than 5 ms.
[image: ]
[bookmark: _Ref504545985]Fig. 18. Incipient fault on phase-A of a cable [6] (© 2008 IEEE). Top: voltage waveform. Bottom: current waveform.
The voltage and current waveforms during a fault on phase-A of a 27 kV underground feeder is shown in Fig. 19. This fault originated from a PILC-to-XLPE cable joint failure, causing a circuit breaker to trip. The fault lasted 3½ cycles. Although this event is about a permanent failure, the signatures could be considered as the “final version” of an incipient fault signature. 
[image: Figure_1_12]
[bookmark: _Ref502847077]Fig. 19. Underground cable joint failure waveform [1] (© 2013 CEATI).
Fig. 20 shows an instance of a series of incipient faults occurred in a cable splice. During a period of over nine months, the cable splice experienced 140 cases of incipient faults whose peak fault current was about 5 to 6 times the RMS load current. Eventually, a permanent failure happened with a fault current of 2626 A RMS, resulting in a sustained outage. Customer called to report the outage event. The recorded voltage and current waveforms of the permanent failure, and associated phase analysis are shown in Fig. 21.
Time domain analysis shows that the duration of the incipient faults lied between 0.25-0.47 cycles which were not detected by conventional relay algorithms. The fault inception angle with regard to the voltage peak was close to zero, with an average value of -1.16 degrees. There was an increasing trend in the normalized instantaneous peak fault current. Frequency domain analysis shows that a positive correlation existed between the DC, fundamental, 2nd and 3rd harmonic normalized currents and the failure. 
[image: ]
[bookmark: _Ref503001160]Fig. 20. An instance of incipient cable failure (© 2009 IEEE).

[image: ]
[bookmark: _Ref503001193]Fig. 21. Recorded waveforms of the permanent failure (© 2009 IEEE).

(3) Faults on Primary Cable Termination 
The voltage and current waveforms during a fault on phase-C of a 13.8 kV underground feeder is shown in Fig. 22. This fault originated from a PILC cable termination failure, and lasted 5 cycles, before cleared by a breaker opening. The peak current was 7.8 kA. This event is about a permanent failure. However, the signatures could be considered as the “final version” of an incipient fault signature. 
[image: Figure_1_11]
[bookmark: _Ref502847125]Fig. 22. Underground cable termination failure [1] (© 2013 CEATI).
[bookmark: _Toc457761938][bookmark: _Toc514428215]Overhead Line Failures
There are many causes for overhead line “failures” which are defined as a short-circuit condition here. Some of the failures such as a conductor contacting a tree branch can have certain signatures. They could be identified before the failure evolves into a major outage.  
Fig. 23 to Fig. 25 show a series of faults caused by tree contact. In about half an hour, three faults occurred, and each fault caused a recloser to trip and reclose, but no sustained outage resulted. Such temporary overcurrent faults could cause damage to overhead lines and has the potential to burn the overhead line down if the underlying problem is not addressed properly.
	[image: ]
(a) voltage and current waveforms
	[image: ]
(b) voltage and current RMS values


[bookmark: _Ref502847203]Fig. 23. First episode of a series of tree contact events from data of [8].
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(a) voltage and current waveforms
	[image: ]
(b) voltage and current RMS values


Fig. 24. Second episode of a series of tree contact events from data of [8].

	[image: ]
(a) voltage and current waveforms
	[image: ]
(b) voltage and current RMS values


[bookmark: _Ref502847210]Fig. 25. Third episode of a series of tree contact events from data of [8].
The voltage and current waveforms during a tree contact event are shown in Fig. 26. In this case, the resulting fault causes the tree branch to burn and fall to the ground. As a result, this fault clears itself without the operation of any protective devices.
[image: 说明: C:\Users\Administrator\AppData\Roaming\Tencent\Users\705221771\QQ\WinTemp\RichOle\$QX`L)2FB(BI15R9G5ZCE0Y.png]
[bookmark: _Ref502847259]Fig. 26. Tree contact fault lasting for about one cycle [9] (© 2010 IEEE).
Voltage and current waveforms collected during an arcing fault on a 13.8 kV feeder are presented in Fig. 27. This figure shows the instant when a tree limb touched the overhead distribution line during a storm, causing the single-phase fault. The feeder circuit breaker cleared the single-phase fault in about 5 cycles.
[image: Figure_1_9]
[bookmark: _Ref502847274]Fig. 27. An arcing fault caused by tree contact [1] (© 2013 CEATI).
The current waveform during a single-phase fault on phase-B of a 25 kV system is shown in Fig. 28. This fault originated from a tree falling into a customer’s triplex service due to windy weather conditions, and lasted 3½ cycles, with a 1.1 kA magnitude.
[image: Figure_4_34]
[bookmark: _Ref502847291]Fig. 28. Fault caused by tree falling into customer triplex service [1] (© 2013 CEATI).
The current waveform during a single-phase fault on phase-C of a 25 kV system is shown in Fig. 29. This fault originated from tree contact that caused primary to burn down, and lasted 3½ cycles, with a 1.5 kA magnitude. Although this event is about a permanent failure, the signatures could be considered as the “final version” of an incipient fault signature. 
[image: Figure_4_35]
[bookmark: _Ref502847408]Fig. 29. Tree contact causes primary to burn down [1] (© 2013 CEATI).
[bookmark: _Toc457761939][bookmark: _Toc514428216]Transformer Failures
Transformers are made of several components. Each of the components could experience failure. The corresponding signatures are different. 
(1) Transformer Tap Changer Failures
Fig. 30 illustrates a case of load tap changer failure. Initially, system reported 0 current value on one phase for less than one cycle. The issue happened several times each day. Over the following several days, the duration of such anomaly increased to just over 1 cycle. The utility scheduled a maintenance outage and sent technicians to investigate the root cause of such anomaly. The technicians found a pin which was shearing and resulting in arcing when the load tap changer moved. After the planned maintenance, it was believed that a catastrophic transformer failure would have occurred within two weeks if the arcing had not been detected and addressed properly [10]. 
[image: Bay Meadows WFC]
[bookmark: _Ref502847425]Fig. 30. Zero current during load tap changer failure [10] (© 2010 IEEE).
The following four cases reveal that the behavior of voltage flicker indices can also be employed to predict tap changer failures.
In the first case, Fig. 31 outlines flicker Plt trends during the incipient tap changer failure process. The red-phase flicker was noticeably higher than in the other two phases. In a period of one week before the transformer was taken out of service and was repaired to avoid final catastrophic failure, about 40 zero-current events were captured. The duration of zero-current disturbance varied from sub-cycle to multiple cycles, and had been increasing gradually during the failure process, as can be observed in Fig. 32. Three typical zero-current events can be seen in Fig. 33. More detailed information about this case can also be found in [1]. 
[image: ]
[bookmark: _Ref504548714]Fig. 31. Flicker Plt during the incipient tap changer failure process – Case 1.
	[image: ]
(a) duration of zero-current disturbances
	[image: ]
(b) zoom in plot (a)


[bookmark: _Ref504548952]Fig. 32. Duration in cycles for all the zero-current events during the incipient failure process – Case 1.

[image: ]
(a) zero-current event that occurred on April 21st, 2010 at 6:13:41.1825
[image: ]
(b) zero-current event that occurred on April 21st, 2010 at 9:51:36.1367
[image: ]
(c) zero-current event that occurred on April 25th, 2010 at 8:10:43.0045
[bookmark: _Ref504549156]Fig. 33. Zero-current events during incipient failure process of a tap changer – Case 1.
The second case is presented in Fig. 34. It shows the flicker Plt trends during the incipient failure process of another tap changer. No zero-current events were captured during this process. The associated transformer was taken out of service to prevent a permanent failure and sustained outage.
[image: ]
[bookmark: _Ref504549377]Fig. 34. High red-phase flicker (Plt) – Case 2.
Fig. 35 outlines the abnormal behavior of flicker Plt index during the incipient failure process of another tap changer. Three zero-current events were captured before the transformer was taken out of service for repair in order to avoid a permanent failure. These three zero-current events are depicted in Fig. 36.
[image: ]
[bookmark: _Ref504549644]Fig. 35. Flicker Plt trend during incipient failure of transformer tap changer – Case 3.
[image: ]
(a) zero-current event that occurred on July 31st, 2015 at 23:37:01.7667
[image: ]
(b) Zero-current event that occurred on August 6th, 2015 at 13:22:21.7170
[image: ]
(c) Zero-current event that occurred on August 6th, 2015 at 13:23:13.1338
[bookmark: _Ref504549935]Fig. 36. Zero-current events during incipient failure process of tap changer – Case 3.
The fourth case where voltage flicker trends were useful to detect incipient failures of transformer tap changer is presented in Fig. 37. No zero-current events were captured during this process.
[image: ]
[bookmark: _Ref504550103]Fig. 37. High red-phase flicker Plt during incipient failure process of tap changer – Case 4.

(2) Transformer Bushing Failures
Bushing failures may occur when the dielectric degrades, which can cause significant damage to the transformer and other equipment connected nearby. When a bushing failure occurs, corrective actions should be undertaken to avoid internal arcing and subsequent violent failures [1]. In this subsection, three cases of transformer bushing failures are presented and discussed.
In the first case, the first signs of an internal fault in the transformer occurred about 25 minutes prior to its disconnection by the protection system. Fig. 38 shows an internal fault on phase B of a 3.75 MVA, 33/4.16 kV, delta (on primary side)-wye (on secondary side) transformer. This event, which was monitored from the secondary (low voltage) side of the transformer, can be noticed by the ringing component on the current (probably associated with an electric arc) and voltage sag on phase B. It was later found that the transformer had a crack in one of its bushings, which is likely one of the main contributors to this event.
Fig. 39, recorded 15 seconds after the fault started[footnoteRef:1], reveals that the current ringing component and the voltage sag remain evident on phase B. After 33 seconds of the fault start, a fuse located on the primary side of the transformer blew, opening one of the terminals of the primary winding associated with phase B. This winding terminal also faulted to ground, affecting the secondary voltage on phases A and C. Phase C was only temporarily affected but remained around nominal value, while phase A voltage stabilized at 57% of the nominal. This fault, however, did not draw large currents. As a result, the overcurrent protection did not trip and the transformer remained operating under this short-circuit condition for nearly 25 minutes (see Fig. 40, recorded 25 minutes after the fault start), when the fault was detected by a pressure relay and the transformer was disconnected from the circuit (the disconnecting instant is shown in Fig. 41). [1:  Although time stamps on the plots suggest this figure was recorded 23 seconds after the fault started, the “Reference Cycle” shown on the plots is used to obtain the actual time difference between them [10].] 

[image: ]
[bookmark: _Ref503008193]Fig. 38. Internal fault on phase B of the transformer, monitored from its secondary side (low voltage side) [11] (© 2003 EPRI).
[image: ]
[bookmark: _Ref503008206]Fig. 39. Fault continues to arc on phase B (snapshot recorded 15 seconds after the starting instant) [11] (© 2003 EPRI).
[image: ]
[bookmark: _Ref503007887]Fig. 40. Fault to ground on one of the primary winding terminals (snapshot recorded about 25 minutes after the starting instant) [11] (© 2003 EPRI).

[image: ]
[bookmark: _Ref503008244]Fig. 41. Instant when the transformer is disconnected from the circuit (snapshot recorded less than 1 minute after Fig. 40) [11] (© 2003 EPRI).
In the second case, voltage and current waveforms during an arcing fault on a 12.47 kV feeder are presented in Fig. 42. It happened due to a bushing failure on transformer primary winding, resulting in a sustained arc to ground. A recloser cleared the fault in about 2 cycles.
[image: ]
[bookmark: _Ref502847510]Fig. 42. Example transformer bushing failure [1] (© 2013 CEATI).
In the third case, the current waveform behavior during an arcing fault on a 4.4 kV distribution feeder is presented in Fig. 43. The event happened during a bushing failure of a distribution transformer and was cleared in 5 cycles by a recloser.
[image: ]
[bookmark: _Ref502847551]Fig. 43. Another case of transformer bushing failure [1] (© 2013 CEATI).
[bookmark: _Toc457761940][bookmark: _Toc514428217]Circuit Breaker Failures
Due to the high power typically passing through circuit breakers (under normal or faulty conditions), arcing usually occurs between the moving and fixed breaker contacts during maneuvers. As a result, circuit breakers are prone to failures after experiencing sufficient wear and tear over time. This section presents several failure modes of circuit breakers.
(1) Line Switch Failure Triggered by Temporary Overcurrent Faults
Reference [12] presents an example of line switch failure. It can be described as follows. Firstly, an overcurrent fault occurred, leading substation breaker to trip and reclose twice. The fault was cleared without the need for a permanent service outage. This sequence of events was in accordance with a usual fault and protection sequence, except for the behavior of phase-A current after fault clearance. Such current presented an irregular behavior, different from the other two phases and from fluctuations caused by regular load variations. The fault and post-fault currents are shown in Fig. 44. Overcurrent temporary faults continued happening multiple times after the initial fault, with the post-fault behavior becoming more irregular and occurring for longer times. Finally, a permanent fault occurred, causing the substation breaker to trip to lockout. Utility investigation determined a main line switch failure, outside the substation.
It was believed that multiple overcurrent faults that occurred over a period of a month deteriorated the switch conditions. Series arcing happened and finally burned its contacts open, causing flashover between the switch and supporting hardware.
	[image: ]
(a) temporary overcurrent fault
	[image: ]
(b) erratic signals after temporary fault


[bookmark: _Ref502847569]Fig. 44. Electrical signatures during and after temporary faults [12] (© 2008 IEEE).

(2) Arcing Capacitor Bank Switch
The current waveform for an arcing capacitor bank switch during energizing of a capacitor bank is presented in Fig. 45 [1]. Repetitive transients can be observed in this figure. The possible underlying cause of the transients is a phenomenon called “multiple prestrike”. When closing a switch, a prestrike could occur if the electric field strength exceeds the dielectric strength of the contacts gap. Inrush current with high-frequency and high-amplitude flows through the circuit breaker. Then the prestrike arc may be interrupted at or near a zero-crossing point, which is dependent on the rate of change of current. If interruption does happen, the dielectric strength will recover. Prestrike may reoccur if the voltage across the contacts exceeds again the dielectric strength of the gap [13]. This process may repeat several times until the contacts touch, and a number of high frequency current zeros could occur as shown in Fig. 45. The inrush current may lead to contact welding which can further result in damage to the contact surfaces [14]. The cumulative damage may lead to final failure of a circuit breaker which is connected to a capacitor bank. 
[image: 说明: C:\Users\A\Desktop\capacitor arcing.PNG]
[bookmark: _Ref502847589]Fig. 45. Current waveform during arcing of a capacitor bank [1] (© 2013 CEATI).
Fig. 46 shows the energization of a 300 kvar grounded capacitor bank, which is energized daily at the same time. Only the signal of phase C is presented. Phase C current exhibits a square wave shape and half-cycle ringing, which resembles a typical arcing voltage. It appears that, as the switch starts to close, the contacts arc over before actually closing. This arc is reignited at the first positive half-cycle and at all negative half-cycles until the switch closes completely. The ringing characteristic observed when the arc reignites is at the resonant frequency created by the presence of the capacitor in the circuit.
[image: ]Slight voltage drop due to arc extinction
Slight voltage rise due to arc reignition
Arc reignition
Arc extinction

[bookmark: _Ref503002689]Fig. 46. Arcing on phase C switch during energization of a capacitor bank [15] (© 2003 EPRI).

(3)  Restrikes during Capacitor De-energization 
Restrike has been defined as “A resumption of current through a switching device during an opening operation after zero current lasts 1/4 cycle at power frequency or longer” [16]. A capacitor switch may restrike during de-energizing when the switch contacts contain some sort of contamination or are defective. Rough contacts surface lead to higher electrical stress as contacts open. When the electric field strength exceeds the dielectric strength of the contact gap, a restrike could occur. Unlike a normal capacitor de-energizing event which does not produce any significant switching transients, obvious transients could be observed during capacitor de-energization with restrikes. Fig. 47 and Fig. 48 were measured at a 28 kV bus in a 230 kV station during a capacitor de-energization with restrike. Such capacitor was switched off with an old oil breaker which is prone to restrike for capacitive switching. Another capacitor bank on the same 28 kV bus was switched by SF6 breaker and no transient was captured during switching off.
[image: ]
[bookmark: _Ref503004884]Fig. 47. 28 kV bus voltages upon oil capacitor breaker restrike – single bank.

[image: ]
[bookmark: _Ref503004886]Fig. 48. 28 kV bus currents upon oil capacitor breaker restrike – single bank.
Fig. 49 and Fig. 50 present a restrike during a back-to-back capacitor switching at the same metering location when another 28 kV capacitor bank was in service during the oil breaker opening. The high frequency oscillation observed in the current is generally observed in back-to-back capacitor switching [17]. In this case, the inductance between the capacitors includes inrush limiting series reactors and buswork.
Based on the analysis of these waveforms, action was undertaken to replace the oil breaker.
[image: ]
[bookmark: _Ref503004438]Fig. 49. 28 kV bus voltages during restrike of oil capacitor breaker – back-to-back capacitor switching (another capacitor bank was in service at the bus).
[image: ]
[bookmark: _Ref503004447]Fig. 50. 28 kV bus currents during restrike of oil capacitor breaker – back-to-back capacitor switching.
Finally, although SF6 breaker has better performance than the oil breaker, it is not immune to restrike. Fig. 51 and Fig. 52 show a 44 kV cap switching with SF6 breaker restrike. Planned outage was scheduled after the PQ data was analyzed and the breaker was repaired before it failed.
[image: ]
[bookmark: _Ref503005060]Fig. 51. 44 kV bus voltage during restrike of SF6 capacitor breaker.

[image: ]
[bookmark: _Ref503005063]Fig. 52. 44 kV bus current during restrike of SF6 capacitor breaker.
[bookmark: _Toc457761941][bookmark: _Toc514428218]Capacitor Failures
Capacitors are typically energized using circuit breakers or switches. The voltage and current waveform measured during capacitor bank switching can contain unique signatures (e.g., oscillatory transient frequency, high transient energy etc.) that can be useful for determining which capacitor on the feeder switched as well as diagnosing capacitor problems. Three instances of capacitor problems are described and discussed below. 
(1) Capacitor Failure Caused by Misoperation of Controller
A capacitor bank usually switches on and off one or two times during one day. Excessive operations over short period of time would probably lead to capacitor bank failures. Reference [19] presents such a case whose underlying cause was believed to be the misoperation of capacitor bank controller. Initially, the capacitor bank experienced excessive switching operations. Shortly after that, phase A capacitor experienced a short-circuit fault. Three-phase current waveforms during phase-A short circuit are shown in Fig. 53. 
Phase B and C still switched frequently after the phase-A capacitor failure. After about two weeks, the contacts of the switch for the phase-B capacitor started to fail. Fig. 54(a) illustrates the RMS current signals as the switch began to fail. Fig. 54(b) illustrates several cycles of the phase voltage and current shortly after the instance shown in Figure 3.32(a). The transients are obvious. After phase-B switch began to fail, the controller still operated the switch frequently. After another four days, the phase B switch contacts only made sporadic contact now and then, leading to the effective disconnection of phase-B capacitor from the grid [19]. According to [19], it was almost certain that the misoperation of capacitor controller caused this series of failures. 
[image: ]
[bookmark: _Ref502847666]Fig. 53. Phase-A capacitor short circuit [19] (© 2004 IEEE).

	[image: ]
(a)
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(b)


[bookmark: _Ref502847679]Fig. 54. Electrical signatures during phase-B switch failure [19] (© 2004 IEEE) (a) RMS currents as the phase-B switch began to fail (b) Voltage and current waveforms in the process of switch failure.

(2) Unsuccessful Synchronous Closing Control
Generally speaking, by switching on a capacitor at or near voltage zero, capacitor switching transients could be minimized. Such kind of accurately timed switching operation can be accomplished with a synchronous closing control. Fig. 55 shows the voltage and current waveforms during the energizing of a three-phase capacitor bank using synchronous closing control. It is obvious that switching transients happen away from a voltage zero, which means that the closing control did not work as designed [18]. 
[image: ]
[bookmark: _Ref502847710]Fig. 55. Waveforms of a capacitor energized using synchronous closing control [18] (© 2012 IEEE).

(3) Capacitor Energization Triggering Resonance

Transients captured from capacitor switching may also identify resonance condition. Fig. 56 shows a capacitor switching event captured by PQ meter at a 28 kV wind farm. The waveforms suggest resonance involving the capacitor bank. Fig. 57 is the voltage THD trend during that day, which confirms the resonance due to capacitor switching. This event triggered investigation and correction of the resonance condition in order to prevent a more serious failure in the system.
[image: ]
[bookmark: _Ref503003308]Fig. 56. Capacitor switching event suggests resonance at wind farm.
[image: ]
[bookmark: _Ref503003400]Fig. 57. Voltage THD trend to show resonance due to capacitor switching.

(4) Other types of failures in a capacitor bank
Power quality monitors (PQM) also proved to be useful in identifying the following capacitor bank health issues:
· Shorted elements in individual capacitor units;
· Effects of system voltage imbalance on capacitor unbalance protection;
· Failures of elements (capacitors, resistors…) in the low voltage control circuitry;
· Timing of circuit switchers and breakers;
· Alignment issues with circuit switcher including arcing horn and pre-insertion inductors;
· Breaker and circuit switcher restrike.
Troubleshooting large capacitor banks when they trip offline due to an unbalance alarm can be time consuming. Sometimes the unbalance alarm may not even be due to shorted capacitor elements but other conditions such as system voltage unbalance or failure to properly match capacitor unit tolerances between phases. The data collected from the PQMs allow for verification of whether a shorted capacitor element has occurred. This prevents unnecessary and labor-intensive troubleshooting. In cases with an actual shorted capacitor element, the phase of the failed capacitor unit can be readily identified.
Fig. 58 illustrates a case where a capacitor bank tripped offline a few hours after energization due to the unbalance protection. The unbalance protection was configured to trip upon the fourth shorted element. After reviewing the data from the PQM, it was determined that an element in phase B had indeed shorted just prior to the capacitor bank trip; however, the data also indicated that this was only the second shorted element in phase B and there were no shorted elements in the other two phases. The remainder of the unbalance was attributable to the system voltage unbalance for which the protection relay was not compensated. The system voltage unbalance was of sufficient level that it placed the unbalance protection above the alarm limit resulting in continuous alarming. This only allowed enough margin for two element failures (instead of four) before the unbalance protection would trip the capacitor bank. Waveform data recorded by the PQM proved very beneficial in making this detail of determination.
A North-American utility has experienced cases of catastrophic failure of capacitor banks where the unbalance protection had effectively been disabled due to a failure of a capacitor or resistor in the low voltage protection circuit. At some later time, the capacitor units would also fail. In the absence of effective unbalance protection, the remaining good capacitor units would be subjected to increasing levels of overvoltage leading to a cascading failure and eventual bus fault. The PQM can also monitor the control voltage at the back of the relay. Analysis of this data may be automated, and notifications sent should the control voltage be lost before a catastrophic failure occurs.
[image: ]
[bookmark: _Ref514424449]Fig. 58. Capacitor bank tripped due to unbalance protection.
The same data recorded by the PQM can also be used to assess issues with the breaker and circuit switchers used to operate the capacitor banks. Each time a breaker or switcher is opened or closed the PQM will trigger a waveform event. From this waveform data, the timing of the device may be determined and compared against historical operations to alert any changes. Alignment issues with the switcher mechanism can also be determined. The Tennessee Valley Authority has experienced instances where the pre-insertion inductors were never contacted during the closing sequence which led to higher than expected transient overvoltages during capacitor energization. The PQMs record these transient overvoltage waveforms from which automated analysis can be made and notifications sent. Fig. 59 shows a switcher where the set bolt had come out allowing the phase B arcing horn to rotate out of alignment. Multiple PQMs had recorded the excessive transient overvoltage on phase B.
Since the PQMs record a waveform each time the switcher or breaker is opened, alerts for restrikes can also be made. Fig. 60 shows a sample restrike waveform recorded by a PQM. A subsequent investigation found an alignment issue with the capacitor switcher which had led to arcing and pitting along the arcing horn as shown in Fig. 61.
[image: ]
[bookmark: _Ref514425107]Fig. 59. Phase B switcher of a capacitor bank is out of alignment.

[image: ]
[bookmark: _Ref514425254]Fig. 60. Waveform with restrike of a capacitor bank.

[image: ]
[bookmark: _Ref514425396]Fig. 61. Pitted arcing horn of a capacitor bank.

[bookmark: _Toc457761942][bookmark: _Toc514428219]Lightning and Surge Arrester Failures
A lightning arrester is usually used to protect the conductors and insulation of power systems or telecommunication systems from the damaging effects of lightning. In most situations, current from a lightning surge can be diverted through a nearby lightning arrester, to earth. A surge arrester is a similar device to protect electrical equipment from over-voltage transients which are caused by internal (switching) or external (lightning) events. In this subsection, one instance of lightning arrester and one instance of surge arrester are presented and discussed below.

(1) Lightning Arrester Failure

Reference [20] presents one instance of lightning arrester failure. Small arc bursts could be observed prior to the permanent arrester failure, as illustrated in Fig. 62(a). In this figure, however, the arc fault is not obvious due to its small current (if compared to the load current). It occurs approximately in the middle of the measurement window, where one shall observe a slightly larger current peak. An extended measurement window (about 60 seconds) of the RMS current is shown in Fig. 62(b). The observed current spikes correspond to arc bursts [20]. Fig. 62(c) presents the final burst, where a current of about 3800 A is added to the load current for over 20 cycles. In this event, the substation breaker tripped. Further investigation revealed that a lightning arrester destroyed itself.
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(a)
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(c)


[bookmark: _Ref502847728]Fig. 62. Electrical signatures during a lightning arrester failure [20] (© 2004 IEEE) (a) One burst of intermittent arc current (b) RMS of multiple arc bursts (c) Final failure.

(2) Surge Arrester Failure

Many gapped silicon carbide (SiC) surge arresters contain a number of spark gaps in series with blocks of silicon carbide material which shows a nonlinear voltage/current characteristic. The spark gaps can degrade over time. As a result, power frequency currents could flow through the SiC arrester blocks. Such condition can overheat the arrester and cause it to fail very quickly [1].
The voltage and current waveforms during a SiC arrester failure are shown in Fig. 63. A recloser cleared the fault in approximately 0.2 seconds.
[image: Figure_1_6]
[bookmark: _Ref502847755]Fig. 63. Surge arrester failure fault waveform [1] (© 2013 CEATI).
[bookmark: _Toc514428220][bookmark: _Toc457761943]Potential Transformer (PT) Failures
On July 20th, 2015, it was discovered that both the power quality monitor and digital fault recorder which monitor the voltages from a 500kV Bus PT set had been repeatedly recording “notching” type waveforms in the A-phase voltage. Such waveforms had been triggered since mid-June with increasing frequency and severity, which raised a concern that these waveforms could be an indication of an incipient failure of the PT or other component in the PT secondary circuit.
Between June 1st and August 1st, over 15,000 transient events were recorded by the PQ monitor connected to the 500kV Bus PT. The transient events had the same characteristics. As can be seen in Fig. 64, the four characteristics were:
1. Notching at 0 crossing;
2. Perturbation at Voltage Peak;
3. Only A-Phase Voltage is affected (red trace);
4. No corresponding response on the current channels.
[image: ]
[bookmark: _Ref514417733]Fig. 64. Typical waveforms recorded on the secondary side of a 500 kV PT.
Initially, it was thought that the event was a metering artifact and not actually occurring. However, a digital fault recorder (DFR) was connected to the secondary of the same PT. In addition, the metering location had two bus PTs and the buses were tied together. On the DFR trace, the voltage notch appeared on one bus but not on the other bus. This eliminated the issue as a metering artifact since multiple devices were seeing the event. As can be seen in Fig. 65, the purple trace is the good PT, the yellow trace contains the voltage notch also observed in the PQ meter. The waveform suggests that the issue is on the voltage transformer or on the secondary side.
[image: ]
[bookmark: _Ref514418777]Fig. 65. Voltage waveforms measured by the DFR on the secondary side of two PTs. Purple trace: good PT. Yellow trace: PT with abnormal behavior.
Extensive troubleshooting was undertaken to determine the cause of the waveform notching. First, each device on the PT secondary circuit was isolated to ensure that it was not a device (relay, DFR, PQ monitor, or meter) that was malfunctioning. Next, infrared testing was completed on all bus PTs. Third, ultrasonic testing was completed on all bus PTs. Finally, megger testing of all cables in the secondary circuit was performed to eliminate the cable as the source of the issue.
The troubleshooting lasted for several days. Over the timeframe, it was clear that the issue was becoming worse. The notching was severe enough to elevate flicker values on the PQ meter, as can be seen in figure 3.
[image: ]
Fig. 66. Flicker trend on the secondary side of the PT under investigation.
The investigation revealed that a GE HMA 83B relay was replaced in May 2015, during a planned outage. The relay was replaced because of a known chattering issue with the relay. However, the replacement relay was the same make/model/vintage as the original unit.
On Monday, August 3rd, 2015, there was a complete loss of power to the meter and PQ monitor fed from the secondary side of the PT. Subsequent investigation revealed that all fuses tested good; however, an auxiliary relay in the meter cabinet was found to be chattering. When the meter lost power, a noticeable drop in the A-Phase flicker levels was observed as shown in Fig. 67.
The HMA relay is used to power the meter and PQ monitor from the A-phase bus PT when there is an outage to the primary feed (station service). As can be seen in Fig. 68, an intermittent arc could be visually seen between contacts 1 and 7 of this relay. The arcing had pitted the contacts to the point that it had resulted in an open condition and a loss of power to both the meter and PQ monitor. Additionally, any slight vibration to the meter cabinet could cause the HMA contacts to make or break.
[image: ]
[bookmark: _Ref514419333]Fig. 67. Flicker trend during meter outage.

[image: ]
[bookmark: _Ref514419663]Fig. 68. Arcing in HMA relay.
Further investigation found that a copper tube with smaller diameter had been used in place of the copper slug that was to be in-line with the relay as can be seen in Fig. 69. This high impedance connection resulted in a lower voltage across the relay coil and the relay chattering. This is a known issue with this model of relay and there is a replacement model. As a temporary fix, the relay was replaced with an identical model and the copper-tube was strapped over, eliminating the notching waveforms. Ultimately, the relay was replaced with a new model.
[image: ]
[bookmark: _Ref514419743]Fig. 69. Picture of incorrect shorting slugs.
As a result of this investigative practice, the utility was able to effectively save the cost of replacing a 500 kV bus PT. The cost of replacing a PT can be as high as $70,000. In addition to the cost of the replacement of a PT, a critical 500 kV bus emergency outage was avoided.

[bookmark: _Toc514428221]Summary and Discussions
The results in this section have clearly shown that the signatures of equipment failures are quite diverse and are very different from those of the power quality disturbances. The main characteristics of equipment failure signatures may be summarized as follows:
(1) Abnormal current response: The signatures of equipment failures are often more visible in the current waveforms as opposed to the voltage waveforms. Many equipment failures exhibit a short-duration current increase or repetitive current pulses. Low-level variations of current can also be observed. Such characteristics are especially evident when examining the RMS values of the current waveforms. 
(2) Diverse time scale: Some equipment failures can only be identified from the waveforms. Examples are breaker restrike and asynchronous capacitor closing. There are also equipment failures that are most visible from a longer time scale such as RMS value variations in several seconds or minutes.
(3) Complexity in characterization: Severity of a disturbance is the main concern for power quality disturbances. As a result, PQ disturbances are characterized using severity parameters. For equipment condition monitoring, however, the goal is to identify the existence of incipient failures or abnormal operations. Severity-oriented indices are not good candidate to characterize the signatures of equipment failures. It is not clear at present what indices are appropriate to characterize equipment failure signatures.
(4) Challenge in detection: Due to the diverse signatures of equipment failures, methods developed to detect power quality disturbances are not adequate for equipment condition monitoring. New methods to detect waveform abnormality associated with equipment operation are needed.
The task to identify equipment failures from their electric signatures seems to be quite daunting. However, if we study the history of power quality monitoring, many similarities can be found. The need to monitor power quality was identified in early 1980’s. At that time, the signatures of power quality disturbances were not well understood. The data recording capability of PQ monitors were very poor. There were no indices to characterize the disturbances. It was a big challenge to monitor and study power quality at that time. But the situation also represents a great opportunity for research and product commercialization. Intensive research on power quality monitoring started in early 1990’s. Through 20 to 30 years of efforts, power quality monitoring has become a “routine” exercise for utility engineers. The disturbance signatures and indices have become “obvious”. In comparison, equipment condition monitoring is a relatively new field. So, it is natural to encounter many unknowns and uncertainties. They represent challenges as well as opportunities. In view of the development trajectory of power quality monitoring, we can safely state that it is just a matter of time that equipment condition monitoring will become as well developed as the power quality monitoring.
There is also a larger trend to support the use of electrical signatures for equipment condition monitoring. One of the main characteristics of the future power systems, the smart grids, is the extensive presence of sensors, meters and other monitoring devices. Massive amount of field data will be collected. The most granular data that could be collected are the waveform type, disturbance related data. Such data contain unique information about the behavior and characteristics of the power system and equipment involved. With advancement on data acquisition hardware and substation automation, it is just a matter of time that system-wide, synchronized waveform data will be made widely available to utility companies. However, the mere availability of such data does not make a power system more efficient or reliable. How to extract useful information from the data and apply it to support power system planning and operation are a new challenge as well as a new opportunity facing our industry. Equipment condition monitoring, as one area of PQ data analytics, represents a highly attractive direction to push the boundary of data analytics in the smart grid era.
Finally, in Table 3, we use one application scenario to illustrate the future of disturbance data analytics for equipment condition monitoring. The scenario is compared with that of power quality oriented applications. One can see that a power quality monitor could become an “equipment doctor” if it is added with data analytics capabilities. 
[bookmark: _Ref502847837]Table 3. Comparison of two applications of disturbance data.
	Type of Applications
	Power Quality
(Current Practice)
	Condition Monitoring
(Future Practice)

	Illustrative problem
	A customer complains repeated trips of its variable frequency drives
	A utility company needs to determine if an aging underground cable needs to be replaced

	

Solution steps
	1) A power quality monitor is used to record disturbances experienced by the customer
2) The data are then analyzed to find the cause of the drive trips
	1) A power quality monitor is used to record voltage and current responses of the cable during its operation
2) The data are then analyzed to check if the cable exhibits abnormal V & I responses such as partial discharges. The frequency & severity of abnormal responses may be compared with those collected from various cables 

	Outcomes
	Methods to mitigate the PQ problem are recommended
	Decision on if the cable needs to be replaced is made

	Nature of monitoring
	Diagnostic monitoring
	Preventive monitoring

	Medical analogy 
	Find the causes and damages of a heart attack after it has occurred 
	Determine if a patient has the risk of heart attack


[bookmark: _Ref502845891][bookmark: _Ref502853353][bookmark: _Toc514428222]METHODS TO DETECT WAVEFORM ABNORMALITY
The first step to identify equipment failure or malfunction is to detect abnormality in voltage and current waveforms. Once an abnormality is detected, the waveforms and RMS values associated with the period of abnormality can then be extracted for detailed analysis. This may include signature evaluation, pattern recognition, statistical analysis and other types of assessments. Eventually equipment condition can be determined from the results.
As discussed earlier, there is a wide variety of equipment failure signatures and many of them are not well understood. Methods to detect power quality disturbances are not applicable either. A proper approach to solving the problem is, therefore, to create general methods that can detect all types of abnormalities. Some research has been conducted in this direction for a few types of equipment failures. The objective of this section is to review these developments. It also uses a practical method to demonstrate the characteristics and challenges of abnormal waveform detection. Finally, a recent development in this direction is presented. The overall objective of this section is to promote and foster the development of systematic power disturbance detection methods that can be used for equipment condition monitoring.
[bookmark: _Toc457761945][bookmark: _Ref504555125][bookmark: _Toc514428223]Current Signature Based Methods
Disturbances associated with equipment failures usually involve the abnormalities of current signals. As a result, most of the published detection methods use current waveforms or RMS trends. In this subsection, several different current-based methods are reviewed. 
[bookmark: _Toc457761946][bookmark: _Toc514428224]Abnormal Component Methods
Superimposed abnormal component is the current signal from which normal load component has been removed. According to reference [2] and [3], superimposed abnormal component can be derived with equation 1: 
	

	[bookmark: _Ref502848258]1


where 
	iA, iB, iC
	stand for instantaneous values of the phases A, B and C currents;

	iFA, iFB, iFC 
	stand for superimposed abnormal components of the phases A, B and C currents;

	k
	stands for a sample index and represents a present sample.



In equation 1, NM should be an integer multiple of N1 which stands for the number of samples per power cycle. In both [2] and [3], NM is equal to two times N1, namely NM = 2N1. 
Abnormal components are very small under steady state, normal operating conditions [2]. During faults and other switching events, the above signals will be relatively more significant. If the abnormal components exceed pre-established limits, then a disturbance can be considered to occur. There are two different methods to determine if the abnormal components have exceeded pre-established limits, as follows. 
(1) Magnitude of Fundamental Frequency Abnormal Component
After superimposed abnormal components have been calculated, the magnitudes of fundamental frequency component can be derived with DFT/FFT. If any of the three-phase magnitudes of fundamental frequency component exceeds a certain threshold, a disturbance is detected. In other words, if any of equation 2a), 2b) and 2c) is satisfied, a disturbance is detected. The thresholds can be pre-established or be estimated by analyzing previous cycles of current signals.
	

	[bookmark: _Ref502761333][bookmark: _Ref502761421][bookmark: _Ref502761301]2a

	

	2b

	

	2c


where 
	IFA_MAG, IFB_MAG, IFC_MAG
	stand for the magnitudes of fundamental frequency component;

	IA_thre, IB_thre, IC_thre
	stand for thresholds.



Both references [2] and [3] propose such a method, but there is some difference between them. The main difference is as follows: in [3], the fundamental components are derived with full cycle Fourier analysis, while in [2], half cycle Fourier analysis is used. 
Fig. 70 illustrates the process of this method. In Fig. 70(c), IFBMag stands for the fundamental component magnitude of phase-B fault current. User pickup is the threshold defined by user. From Fig. 70(c), we can know that this method successfully detects the disturbance shown in Fig. 70(a). The second fault current blip observed in phase-B (observable in Fig. 70(b), (c)), which appears when the cycle with the fault becomes the reference cycle (2 cycles later), does not lead to false detection because there is no coincident neutral current blip.
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(a) three-phase current waveforms
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(b) abnormal components of phase B and neutral current

	[image: ]
(c) fundamental frequency components of abnormal component


[bookmark: _Ref502848624]Fig. 70. Illustration of the fundamental abnormal component method [2] (© 2008 IEEE).

(2) Instantaneous Superimposed Abnormal Components
Reference [21] proposes a method to detect arcing events. Instantaneous superimposed abnormal current is used to detect disturbances. Detailed algorithm can be explained as follows: first, superimposed abnormal currents are derived; if the maximum value of the abnormal current exceeds a certain threshold during a predefined time interval, then a disturbance is detected. In other words, during a predefined interval, if any of equation 3a), 3b) and 3c) is satisfied, a disturbance is detected. The thresholds can be pre-established or estimated by analyzing previous cycles of current signals. 
	

	[bookmark: _Ref502761869]3a

	

	3b

	

	3c


where
	|iFA(k)|, |iFB(k)|, |iFC(k)| 
	stand for the absolute values of abnormal components in phase A, B and C;

	iA_thre, iB_thre, iC_thre
	stand for thresholds;

	K
	stands for a sample index and means a present sample, where k - 1 means the previous sample.



Fig. 71 illustrates this method. It should be noted that the current waveform is not from field measurement, but from synthetic signals. Reference [21] does not provide a detailed method to derive the abnormal component. In order to illustrate this instantaneous abnormal component method, equation 1 is used to derive the abnormal component. It is apparent that there is a disturbance in the original waveform and this method successfully detects the disturbance. 
[image: ]
[bookmark: _Ref502848986]Fig. 71. Illustration of instantaneous abnormal component method.
[bookmark: _Toc457761947][bookmark: _Toc514428225]Wavelet Analysis Methods
In reference [3], wavelet analysis method is used to detect incipient failures in underground cables. Incipient failures are usually self-clearing faults which have short durations (<3 cycles) and are generally extinguished before utility protective devices have time to operate. In order to identify incipient failures, an algorithm based on wavelet analysis is developed.
More specifically, with wavelet analysis, the measured signal can be decomposed into the low frequency approximation coefficients and the high frequency detail coefficients. The low frequency approximation coefficients can represent the fundamental frequency component, while the high frequency detail coefficients can represent the transient state [3]. The detection method involves two rules and if either one is triggered, a disturbance is detected. 

(1) Detection Based on Approximate Coefficients

The approximation coefficients in the frequency band of 0-240 Hz are utilized in this detection rule. This rule is less related to the high frequency components. A disturbance is detected if equation 4 is satisfied. The second subfigure of Fig. 72 illustrates this detection rule. The disturbance shown in the first subfigure can be detected with this rule.
	

	[bookmark: _Ref502849189]4


where
	RMS
	is root mean square value;

	RMSCR
	is a derived parameter.



[image: ]
[bookmark: _Ref502849097]Fig. 72. Illustration of wavelet analysis method [3] (© 2012 IEEE).
This rule is insensitive to the heavy noise because it is not related to the high frequency components. There will be a short detection delay when applying this rule.

(2) Detection Based on Detailed Coefficients

The detail coefficients in the frequency band of 240-960 Hz are utilized in this detection rule. This rule is less related to the fundamental frequency. A disturbance is considered to be detected when equation 5 is satisfied. The third subfigure of Fig. 72 stands for this detection rule. The disturbance shown in the first subfigure can be detected with this rule.
	

	[bookmark: _Ref502849212]5


where
	Energylatest
	stands for the energy of the latest detail coefficients;

	Energypast
	stands for an array of the energy of the past detail coefficients;

	MEAN
	stands for the average function;

	STD
	stands for the standard deviation function.



This rule has a good performance in the low noise environment. Since it does not consider the low frequency component, it is insensitive to the slow change of fundamental frequency component. 
[bookmark: _Toc457761948][bookmark: _Ref502849607][bookmark: _Toc514428226]Fundamental Frequency Component Method
In reference [22], another method is proposed to detect incipient faults in medium voltage circuits. Its detection process can be explained as follows: first, the fundamental component of actual current waveform is calculated with DFT; if the fundamental component magnitude exceeds a certain threshold, a disturbance is detected. Then, more detailed analysis is made to determine if a cable fault occurs. 
In order to get fundamental component magnitude, half cycle DFT is done every one eighth of a cycle which means for every Fourier analysis, one eighth of N1 new samples are moved in and one eighth of N1 old samples are moved out. N1 stands for the number of samples in one power frequency cycle.
There are two different modes for the calculation of thresholds: (1) fixed threshold, i.e. predefined threshold; (2) dynamic thresholds, the average value of several previous cycles’ fundamental component magnitude is calculated first; the threshold can be derived by multiplying the average value by a coefficient larger than 1.

Fig. 73 illustrates the process of this method. A fixed threshold is used in this case.
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(a) original waveform
	[image: ]
(b) detection process


[bookmark: _Ref502849407]Fig. 73. Illustration of fundamental component method.
[bookmark: _Toc457761949][bookmark: _Toc514428227]Voltage Signature Based Methods
Most of the disturbances in voltage waveforms are power quality disturbances. There has been extensive research on those disturbances. There are also many commercial devices for the detection of power quality disturbances. IEC 61000-4-30 has provided comprehensive techniques for the detection and characterization of power quality disturbances, including short duration voltage variations (voltage sag, swell and interruption) and steady state disturbances (harmonics, inter-harmonics and voltage flicker). However, there is little discussion on the detection of voltage transients. Voltage transient is a special kind of disturbance because it not only causes power quality problems but also carries valuable information about utility equipment conditions, such as capacitor restrike. Thus, this section presents some existing methods for the detection of voltage transients. 
[bookmark: _Toc457761950][bookmark: _Ref502849728][bookmark: _Ref502852699][bookmark: _Toc514428228]Waveform Methods
The main idea of waveform detection methods is to detect disturbances by comparing two consecutive cycles. Since there are different ways to compare two cycles of waveforms, there are some subtle differences among the various adaptations of the method. Three representative versions of the method are summarized as follows:
(1) Two consecutive cycles of a waveform are compared sample-by-sample. A disturbance is detected if the comparison shows that the difference exceeds a user supplied magnitude threshold and lasts longer than a user-supplied minimum duration. 
(2) The two consecutive cycles of the waveform are first squared. Point-by-point differences are calculated on the squared values. The absolute values of the differences are summarized over the comparison cycle to form a MAVSA (Mean Absolute Variation in Squared Amplitude) value. If the value exceeds a threshold, a disturbance is detected. 
(3) The two consecutive cycles of the waveform are subtracted point by point. The RMS value of the differential waveform is then calculated. It represents the distance between the two cycles. A percentage distance is then calculated by dividing the RMS value of the differential cycle by that of a healthy cycle. If the percentage value exceeds a threshold, a disturbance is detected. 
The advantages and disadvantages of above methods are analyzed. The first method is the most flexible one. For users who are not experienced in selecting threshold values, the method may catch a lot of inconsequential disturbances or miss important disturbances. The third method is simpler since only one percentage threshold is needed. Since it compares an entire cycle, disturbance that last a fraction of a cycle could be missed. The second method also compares one whole cycle and has the characteristics of the third method. However, its square operation is not technically sound. The method essentially compares the squared waveforms; its algorithm needs improvement. 
[bookmark: _Toc457761951][bookmark: _Toc514428229]Wavelet Analysis Method
Reference [23] presents a wavelet analysis method to detect voltage transients. The method can be explained as follows: time-frequency plane is first computed; the behavior of fundamental frequency and high frequency components is analyzed to detect the presence of voltage transients. Fig. 74 illustrates an example of voltage transients. In this case, the fundamental frequency of the voltage signal is 50 Hz. 
[image: ]
[bookmark: _Ref502849460]Fig. 74. Wavelet transform of voltage transients [23] (© 2000 IEEE).

Fig. 74(a)-(e) stand for voltage waveform, profile at 50 Hz, profile at 350 Hz, profile at 650 Hz and profile at 1500 Hz, respectively. In this case, high frequency peaks and sharp changes in the signal appear almost simultaneously. Peaks in the high frequency profiles are compared with threshold values to detect transients. A part of the signal which is assumed to be disturbance-free, is used to derive the threshold values. It should be noted that voltage sags will also show abnormal behavior in high frequency components. In order to differentiate voltage transients and sags, duration and number of peaks exceeding threshold values are important parameters that can be used [23]. 
[bookmark: _Toc457761952][bookmark: _Toc514428230]Composite Methods
Reference [24] presents a composite method to detect those disturbances. Many parameters are computed using voltage and current signals: 
· Harmonic and non-harmonic components below 16th harmonic are computed for each current input. The calculation is conducted one time for every period of two cycles;
· Current and voltage RMS values are computed. One RMS value is derived for every two-cycle data from each input;
· The real, reactive, and apparent power are computed one time for every period of two cycles;
· Energy is computed for the high-frequency current channels.
A running average is derived for each parameter. For each parameter shown above, this method uses the running average to calculate two trigger thresholds; one upper threshold and one lower threshold. For every two-cycle interval, each parameter is compared with the corresponding thresholds. If any of above parameters falls beyond the range set by the upper and lower thresholds, a disturbance is detected, as shown in equation 6. 
	

	[bookmark: _Ref502849538]6


where
	X(i) 
	stands for the ith value of any of above parameters;

	Xmean
	stands for the running average;

	α
	stands for the coefficient (larger than 1) corresponding to the upper threshold;

	β
	stands for the coefficient (less than 1) corresponding to the lower threshold.



Each single algorithm in this composite method is quite similar to the current fundamental component method illustrated in Section 4.1.3. Fig. 73 can help readers to understand the detailed process of this composite method. 
[bookmark: _Toc457761953][bookmark: _Ref504555135][bookmark: _Toc514428231]An Illustrative Abnormality Detection Method
By combining the strength of various known methods with authors’ research experiences, a practical abnormality detection method has been developed for testing and demonstration. This method is illustrated here for the purpose of revealing the main issues that need to be considered when developing abnormality detection methods. The main characteristics of the illustrative method are that 1) both voltage and current signals are used and 2) both the variations of waveforms as well as RMS values are used. The overall flowchart of the method is shown in Fig. 75.


[bookmark: _Ref502849705]Fig. 75. Detailed process of the proposed method.
[bookmark: _Toc457761954][bookmark: _Ref502852723][bookmark: _Toc514428232]Description of the Method
Due to the diverse signatures of equipment failures, both the waveform abnormality and RMS value abnormality in voltage and current signals are used in this method in order to detect all types of associated abnormalities. In other words, four different features are applied concurrently for disturbance detection. The detailed steps of detection using waveform abnormality and detection using RMS value abnormality are illustrated below. 

(1)  Detection Using Waveform Abnormality 

Waveform method detects the presence of disturbances by comparing the consecutive cycles of waveform data. When the difference between two consecutive cycles exceeds a certain threshold, a disturbance is detected. Since there are different ways to compare two cycles of waveforms, there are some subtle differences among the various adaptations of the method. Three representative versions of waveform method have been summarized in Section 4.2.1. A new waveform detection method is proposed by combining the advantages and avoiding the disadvantages of the three methods.
The new waveform method can be explained as follows. The differential waveform between two consecutive cycles is computed first. The waveform is then divided into M segments (for example M=8). RMS value is calculated for each segment. If one of the segment RMS values is greater than a threshold, a disturbance is detected. This criterion is described using the following equation. 
	

	7


where
	ΔXRMS(i)
	is the RMS value of ith segment of the differential waveform Δx(t);

	XRMS(i)
	is the RMS value of the ith segment of the pre-disturbance (or reference) waveform x(t);

	α
	is a threshold value supplied by user.



This proposed waveform detection method is illustrated in Fig. 76 and Fig. 77. This method is simple to implement and can successfully detect disturbances which last only a section of one cycle. 
[image: ]Sample Points

[bookmark: _Ref502849879]Fig. 76. Illustration of method to derive differential waveform.

[image: ]
[bookmark: _Ref502849884]Fig. 77. Illustration of detection using waveform abnormality.

ΔXRMS(i) and XRMS(i) can be calculated by using the following equations:
	

	8



	

	[bookmark: _Ref502850025]9


where
	N
	is the number of samples in one cycle;

	Δx(k) 
	is the kth point in differential waveform;

	x(k) 
	is the kth point in reference waveform.



The reference cycle is a healthy cycle which is disturbance-free. When there are no disturbances in three consecutive cycles, the current cycle is used as a reference cycle and its segment RMS values are calculated with equation 9. Thresholds are updated with the new segment RMS values. If any cycle of last three consecutive cycles contains disturbances, the thresholds will not be updated. 
When using the proposed waveform method, there are two practical issues to consider: (1) When doing subtraction calculation for two consecutive cycles, positive going zero crossing point needs to be checked if the first cycle is disturbance-free. The comparison of two consecutive cycles starts from the positive going zero crossing point; (2) The real frequency of a power system usually fluctuates in a small range near the nominal value, which will result in phase difference between the corresponding points in two consecutive cycles. Thus, frequency variation correction is needed. Detailed methods for zero crossing point detection and frequency variation correction will be provided in Appendix A. It should be noted that though the two operations are a useful add-on, they are not necessary, especially when the waveform distortion level is high. In the presence of high waveform distortion, these two operations may increase false alarms due to the possible error in getting the differential waveform and the ratio of segment RMS value of differential waveform to that of the reference waveform.

(2)  Detection Using RMS Value Abnormality 

The basic idea of proposed RMS method is to detect disturbances by evaluating the RMS values of current and voltage signals. Every half cycle, this method calculates RMS values using one cycle’s data. If any RMS value exceeds the range defined by upper and lower limits, a disturbance is detected. Compared with detection methods which utilize RMS values updated every whole cycle, this half-cycle refreshed method has better time resolution. Fig. 78 illustrates the detailed process of this RMS method. 
[image: ]
[bookmark: _Ref502850057]Fig. 78. Illustration of detection using RMS value abnormality.
Half-cycle refreshed RMS value refers to the RMS value calculated for a one-cycle sliding window that refreshes every half-cycle. In other words, half of the data used for calculating a RMS value is fresh data. When a new cycle’s data arrives, two RMS values need to be calculated. One is X’RMS(1/2) which means the RMS value calculated using the last half of the samples in previous cycle and the first half  of samples in the current cycle. The other one is XRMS(1/2) which means the RMS value of the current cycle. It should be noted that the RMS value is calculated for the original waveform, not for the differential waveform. Besides, if the previous cycle is disturbance free, its zero-crossing point needs to be checked. If one of the half-cycle refreshed RMS values is greater than or less than certain thresholds, a disturbance is detected. The criteria are described using the following equations.
	

 or 
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	11


where
	XRMS
	is the nominal RMS value of the original waveform x(t);

	βx
	are the threshold values supplied by user.



XRMS can be also calculated with equation 12:
	

	[bookmark: _Ref502850211]12


where
	XRMS(n) 
	is the current reference RMS value;

	XRMS(n-1) 
	is the previous reference RMS value;

	X12RMS 
	is the RMS value calculated by the latest 12 healthy cycles.



The results of the disturbance detection procedure are listed below.
· Starting time of the disturbance (in the unit of sample number);
· Ending time of the disturbance (in the unit of sample number); and
· Disturbance waveform including three or more cycles of pre-disturbance data and at least three cycles of post-disturbance data.
If equations 13-15 are satisfied for three consecutive cycles, a disturbance can be considered to have ended. 
	

	[bookmark: _Ref502850320]13
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 and 
	[bookmark: _Ref502850323]15


where βhysteresis stands for hysteresis value and its typical value is 2%. 

Fig. 79 illustrates the output of disturbance detection procedure. 
[image: ]
[bookmark: _Ref502850354][bookmark: _Ref502850350]Fig. 79. Output of disturbance detection procedure.

(3)  Threshold Values

The setting of threshold values is very important for the detection of disturbances. For the proposed method in previous sections, several critical parameters which need to be set are M, α, βsag, and βswell. Typical values used for detection of voltage disturbances are shown in Table 4. 
[bookmark: _Ref502850423]Table 4. Typical parameter values.
	Level of capability
	M
	α
	βsag
	βswell

	1
	8 or 16
	7%-20%
	70%-90%
	110%

	2
	16 or 32
	7%-20%
	70%-90%
	110%

	3
	3000 to 4000
	7%-20%
	70%-90%
	110%

	4
	Specialized instruments have their own methods for disturbance detection



Since current signals are more prone to various disturbances than voltage signals, these parameters need to be reset when used for detection of current disturbances. In normal conditions, the variations of current RMS values are relatively bigger than variations of voltage RMS values. However, the difference is not significant. Thus, the typical values of βsag, βswell and M in Table 4 can be adopted for the detection of current disturbances. In normal conditions, the waveform distortion of current signals is much more serious than voltage signals. If similar α values are used for the detection of current disturbances, many inconsequential disturbances could be captured. Thus, α values needs to be reset. After applying different α values to a large amount of field measurement data, we recommend to adopt values between 27% and 40%.
[bookmark: _Toc457761955][bookmark: _Ref502853176][bookmark: _Toc514428233]Demonstrative Test Results
The illustrative method is applied to a multi-day field record and the main results are shown here. The purpose is to demonstrate the type of abnormalities existed in the waveforms. Table 5 shows the measurement setup. Fig. 80 shows the metering point in the substation. The parameters used for thresholds setting are shown in Table 6.[footnoteRef:2] [2:  Part of the data (2 days) can be downloaded from the following website: https://drive.google.com/o pen?id=0B82aih1d7VSTfjN3WkRKNkF3aVpBamc1VGdtWGt2QlJqeUtyY3lJYnJ5OUQ3V09tNjNNb0U.] 

[bookmark: _Ref502850488]Table 5. Measurement setup.
	Measured signals
	Substation three-phase bus voltages and feeder currents

	Measurement duration
	Two weeks

	Sample points per cycle
	64

	Sampling mode
	Continuous (i.e. no gap in the data)





[bookmark: _Ref502850587]Fig. 80. Measurement point and measured parameters.
[bookmark: _Ref502850497]Table 6. Thresholds used for threshold setting.
	
	M
	α
	βsag
	βswell

	I
	8
	36%
	90%
	110%

	V
	8
	17%
	90%
	110%



The number of abnormalities or disturbances captured by different detection algorithms is shown in Table 7 and in Fig. 81. Since some disturbances can be detected by two or more algorithms, the summation of the four percentage values is larger than 1. Fig. 82 shows the distribution of disturbances at different hours captured by different algorithms. 
[bookmark: _Ref502850821]Table 7. Number of disturbances captured by different functions.
	
	Voltages
	Currents

	RMS method
	4
	41

	Waveform method
	24
	89


[image: ]
[bookmark: _Ref502850861]Fig. 81. Percentage of disturbances detected by different functions.

[image: ]
[bookmark: _Ref502850876]Fig. 82. Distribution of disturbances at different time.
The detection results include disturbances of the following categories: (1) transients; (2) overcurrent; (3) low-level current variations; (4) increase of current waveform distortion. Disturbances of these different categories are presented from Fig. 83 to Fig. 90. In all the figures, red, green and blue lines represent phase A, B and C respectively. 
· Transients
	[image: ]
(a) waveforms
	[image: ]
(b) RMS values


[bookmark: _Ref502850935]Fig. 83. Transients--case 1.
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(a) waveforms
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(b) RMS values


Fig. 84. Transients--case 2.
· Overcurrent
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(a) waveforms
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(b) RMS values


Fig. 85. Short duration overcurrent--case 1.
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(a) waveforms
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(b) RMS values


Fig. 86. Short duration overcurrent--case 2.

· Low-level current variations
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(a) waveforms
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(b) RMS values


Fig. 87. Low-level current variation--case 1.
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(a) waveforms
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(b) RMS values


Fig. 88. Low-level current variation--case 2.

· Increase of current waveform distortion
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(a) waveforms
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(b) RMS values


Fig. 89. Increase of current waveform distortion--case 1.
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(a) waveforms
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(b) RMS values


[bookmark: _Ref502850937]Fig. 90. Increase of current waveform distortion--case 2.
[bookmark: _Toc451853426][bookmark: _Toc457761957][bookmark: _Ref504586684][bookmark: _Ref504591864][bookmark: _Ref504593352][bookmark: _Toc514428234]Recent Developments
Multiple waveform abnormality detection methods have been reviewed in sections 4.1-4.4. These methods are mainly empirical, built on an intuitive understanding of the characteristics of abnormal waveforms. There is a need to develop a generic and systematic method capable of accomplishing this objective. The method shall also be rigorously supported by established signal processing theories. This section presents a recent progress towards this goal.
[bookmark: _Toc514428235]The Underlying Concept
In a scenario with no waveform disturbance, if a given waveform cycle is subtracted from the subsequent cycle, the resulting differential waveform is expected to contain only noise[footnoteRef:3]. If noise follows a Gaussian distribution, the data points of the differential waveform are also expected to follow such a distribution. [3:  One shall notice that cycle-by-cycle subtraction is one of multiple possible approaches to produce the differential waveform. As such, a separate investigation can be undertaken to determine the most suitable approach to obtain the differential waveform.] 

On the other hand, in a scenario with a disturbance or abnormality in the waveform, data points of the differential waveform will not follow the form of the Gaussian distribution. The difference between the statistical distribution of the differential waveform with abnormality and the Gaussian distribution could be employed to characterize the waveform abnormality. A scientifically rigorous method for waveform abnormality detection could then be developed based on this concept.
[bookmark: _Toc457761958][bookmark: _Ref504591283][bookmark: _Ref504593649][bookmark: _Toc514428236]Abnormality Detection Model
Under normal operating condition, the current signal contains normal load component and random noise/fluctuations, which can be caused by random load behavior and data acquisition devices. When an abnormality exists, an abnormal component is superimposed to the normal current signal. Thus, the abnormality detection can be formulated as a hypothesis test problem where hypothesis H0 is that the system is operating under normal condition and hypothesis H1 is that the system is operating under abnormal condition. This is mathematically expressed as follows:
	

	[bookmark: _Ref502907136]16

	
	

	

	[bookmark: _Ref502907138]17


where i(t) is the current signal measured at the substation, Ak and φk are the magnitude and phase angle of the k-th harmonic component, K is the highest harmonic order, fr is the fundamental operating frequency, n(t) represents the random noise, and a(t) represents the abnormal component. The time instant t assumes only discrete values t = nΔt for n = 1, 2, …, where Δt is the sampling interval of the data acquisition system. Ideally, fr = fn where fn is the nominal frequency (60 Hz in North America). However, the actual system operating frequency fluctuates slightly around the nominal frequency and may change from cycle to cycle.

The steady-state components in the current signal, , are common for both normal and abnormal system operating conditions and, as such, contain little useful information for the abnormality detection. Therefore, it is first necessary to eliminate these components from the current signal. This is carried out by estimating the steady-state components of the previous one cycle through the fast Fourier transform (FFT) and subtracting them from the waveform cycle under analysis to reveal the residual signal. Fig. 91 illustrates the procedure to obtain the residuals. Further details regarding the steady-state components estimation are provided in Appendix B.
[image: ]
[bookmark: _Ref502851337]Fig. 91. Illustration of method to derive residual waveform.

Under a normal system operating condition, the current residual signal () can be represented as in 18 whereas under an abnormal condition it can be represented as in 19.
	
 (normal condition)
	[bookmark: _Ref502851517]18

	
	

	
 (abnormal condition)
	[bookmark: _Ref502851519]19




As the goal of this method is to detect a generic abnormality rather than any specific type, a(t) is unknown and can follow a wide variety of forms. On the other hand, if the random noise n(t) is well understood and modeled, one can detect an abnormality based on how well the observed residual signal  matches the random noise model n(t). If the residual does not follow the noise characteristic as shown in 18, an abnormality is detected.
The Gaussian model is the most widely used and validated noise model in various areas such as control systems, communications, and signal processing. As such, one may initially assume that n(t) is an ergodic Gaussian random process, that is, the discrete-time residual samples n(lΔt) follow a Gaussian probability density function. Tests on field current data have been conducted to validate this assumption. Current waveform measurements were collected at one end of a transmission cable which is located in a 138 kV ring network. The sampling frequency was 3840 Hz with the nominal frequency of 60 Hz, which corresponds to 64 samples per cycle. Noise distribution characterization was then conducted on 1,000 randomly chosen events, where each event contains 5 cycles of current samples (i.e., 320 current samples per event). All chosen events are normal ones, without abnormality.
For each cycle of the chosen events, the steady-state components are estimated and subtracted by using the scheme explained in Appendix B to obtain the residual signals. The classic Shapiro-Wilk, Anderson-Darling, and Jarque-Bera normality tests [25] are then applied to verify whether the residual signals follow a Gaussian distribution. If the residuals of an event pass any of these three tests, such residuals are considered to follow a Gaussian distribution. A pass rate of 94.4% was obtained after applying the normality tests to the 1,000 studied events, which validates the assumption that the random noise n(t) follows a Gaussian distribution.




Given that the noise signal n(t) does follow a Gaussian distribution, it can be fully characterized by its mean and variance which, in turn, can be estimated from the residual signals in a scenario with no abnormality. Let NG be the number of cycles of residual data used for estimating the mean and variance of the noise, and N0 be the number of samples per cycle. The discrete-time residual data of the NG cycles are denoted as , where  represents the r-th point in the l-th cycle. The unbiased estimates of the mean () and variance () of the residual data are [26]:
	

	20

	
	

	

	21



The Gaussian probability density function (pdf) that represents the residual data and, consequently, the noise n(t) is thus:
	

	[bookmark: _Ref506192390]22



The assumption that n(t) is an ergodic Gaussian random process is not rigorously precise as, in reality, the mean and variance parameters of the Gaussian model may vary with time. Thus, in practical applications, it is advisable to update the estimated mean and variance of the Gaussian noise pdf continuously or periodically to improve the accuracy of the noise modelling.
[bookmark: _Toc457761959][bookmark: _Toc514428237]Abnormality Detection Rule
Based on the analysis of the previous section, the current residual samples shall follow the Gaussian distribution if there is no abnormality in the waveform. On the other hand, the residual samples will follow the distribution of the abnormal component a(t) if such an abnormal component exists. Although there is no prior knowledge on the characteristics of a(t), it is reasonable to assume that a(t) does not follow Gaussian distribution.
Therefore, a waveform abnormality can be detected by monitoring the deviation between the distribution of the residual samples and the underlying Gaussian distribution that represents system noise. If this deviation is smaller than a given threshold, the distribution of the residual samples presents a good match with the Gaussian pdf of the noise, and an abnormality does not exist. On the other hand, when it is larger than the threshold, the distribution of the residual samples does not match the Gaussian pdf of the noise and an abnormality exists. The abnormality detection approach is illustrated in Fig. 92.
[image: ]
[bookmark: _Ref502851849]Fig. 92. Illustration of the proposed detection rule.




Kullback-Leibler divergence (KLD) [27], [28] measure is employed to measure the deviation between the distribution of residual data in a specific detection window, denoted by , and the theoretical Gaussian distribution that represents system noise, denoted by f(x). This deviation between  and f(x) is denoted , and the distribution  is estimated with the kernel density estimation approach [29]. For each cycle of current waveform signals, one KLD value is calculated and evaluated to determine if abnormality exists.
The detection rule in Fig. 92 can be represented as follows. If the following equation is satisfied, an abnormality exists.
	

	23


where Dth is the abnormality detection threshold.

Further details regarding the estimation of residual pdf  by using the kernel density estimation and the calculation of KLD are provided in Appendix C and Appendix D, respectively.
[bookmark: _Toc457761960][bookmark: _Toc514428238]Selection of the Abnormality Detection Threshold
The performance of the current method is highly dependent on a proper selection of the abnormality detection threshold. According to the signal detection theory [27], a proper threshold selection must account for an acceptable probability of false alarm. A false alarm occurs when normal data is classified as abnormal.
For an arbitrary threshold value Dth, the false alarm probability in a certain period of time can be calculated as:
	

	24



where p(s) is the probability density function obtained by using KLD  values calculated from waveform measurements with no abnormality, that were collected during a given period of time. The false alarm probability PFA is a monotonic non-increasing function of Dth.
If the acceptable false alarm probability is α, the selected threshold Dth must be the smallest value that satisfies PFA(Dth) ≤ α. Mathematically, it can be expressed as follows:
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A systematic threshold selection shall follow these steps:
· Step 1: Collect NKLD sets of the residual data of previous waveform cycles, where each set contains N samples;
· Step 2: For each set, estimate the probability density function of the N samples by employing the kernel density estimation. Then, calculate the divergence level (i.e., calculate the value of the KLD) between the kernel estimation and the theoretical Gaussian noise pdf. Each KLD value is a sample of p(s) function;
· Step 3: From the NKLD KLD values, perform the kernel density estimation of p(s);
· Step 4: Find the threshold value Dth by using 25 for the given false alarm rate α.
Fig. 93 illustrates the false alarm probability as a function of the KLD threshold value Dth for a segment of the field data. The threshold selection for a false alarm rate of 3.5% is shown. By using 25, the corresponding KLD value, which is 13.74, is chosen as the threshold.
[image: ]
[bookmark: _Ref502852470]Fig. 93. False alarm probability v.s. different threshold values for the field test data.
The threshold selection can overcome the difficulty of assigning a proper threshold to a system with large variations of current values. Furthermore, the selected threshold can be automatically updated by continuously or periodically updating the pdf with the KLD values, p(s). Alternatively, one shall also update the threshold setting by using a sliding time window prior to the waveform cycle that is under evaluation. The waveform data comprised by the sliding window can be adopted as the reference data for threshold selection. 
Based on the application of different α values to extensive field measurement data, it is recommended that values between 15 / N1 and 50 / N1 be selected as the acceptable false alarm probability, where N1 is the number of cycles collected in one day.
[bookmark: _Toc457761961][bookmark: _Toc514428239]Summary of the Method
The overall waveform abnormality detection procedure can be summarized as in Fig. 94. This algorithm allows continuous and adaptive detection of abnormality for a monitoring device installed at a substation. In this procedure, the abnormality detection threshold is continuously updated by using a sliding window whose length is NKLD. A buffer stores the most recent NKLD KLD values. When Nset newest KLD values are added into the buffer and Nset oldest KLD values are removed from the buffer, the threshold is updated.
In the initialization step, values of several implementation parameters are set. The threshold Dth is derived from NKLD KLD values which are stored in a buffer. A counter NB is set to be zero. It indicates the number of KLD values that have been added to the buffer after the most recent update of the threshold. Then, the theoretical Gaussian pdf for the normal situation and pdf of the residual data in the detection window are estimated. The KLD of the two pdfs are calculated and saved into the buffer. The calculation result is compared with the threshold to decide if there is an abnormality. If an abnormality is detected, the abnormal data are saved for further detailed analysis. Then, the counter NB is incremented by one. The KLD value is stored into the buffer and the oldest KLD value is removed from the buffer. When NB = Nset, i.e., Nset newest KLD values are added into the buffer and Nset oldest KLD values are removed from the buffer, the threshold Dth is updated based on buffered KLD values.
[bookmark: _Toc457761962][bookmark: _Toc514428240]Performance Assessment
This section presents a performance assessment of three methods for detecting waveform abnormalities: (1) the generic waveform abnormality detection method described in Section 4.5; (2) the MAVSA method described Section 4.2.1; and (3) the differential waveform RMS method (i.e., the detection method using waveform abnormality) described in Section 4.4.1. The assessment is carried out by applying these methods to actual field measurement data.
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[bookmark: _Ref504581415]Fig. 94. Detailed procedure of the generic waveform abnormality detection method.

[bookmark: _Toc457761963][bookmark: _Toc514428241]Performance evaluation based on detection rate versus false alarm rate curves
In this subsection, the probability of detection PD versus the probability of false alarm PFA curve is obtained for the three studied methods. This is the most widely used performance metric for binary hypothesis tests and reveals the trade-off between the detection performance and the allowable false alarm probability as the discrimination threshold changes [27]. For a given false alarm probability, the method with better performance is that with the higher detection probability. On the other hand, for a given detection probability, the method with better performance is that with smaller false alarm probability.
To obtain the PD versus PFA curve, it is first necessary to select a set of multiple events and characterize each of them as normal or abnormal event. Then, the probability of detection and the probability of false alarm of a given method can be obtained by comparing the detection result of the method with the event characteristics recorded in the initial identification. For this performance assessment, 2991 events are captured by applying a waveform method to the 3-week continuous data measured from the system shown in Fig. 95. The data measured at 3 SUB are adopted in this comparison. The measurement setup is shown in Table 8.


[bookmark: _Ref502852814]Fig. 95. System diagram from where field data were measured.

[bookmark: _Ref502852840]Table 8. Measurement setup.
	
	Description

	Measured signals
	Three-phase voltage and current data at one end of a 138 kV transmission cable

	Sample points per cycle
	64

	Sampling mode
	Continuous



From the perspective of phase-A data, there are 1069 normal and 1922 abnormal events in the 2991 selected events. Each event contains 150 cycles of current data. For an event that has abnormality, the data contain 50 cycles before the abnormality and 100 cycles after the abnormality (including the abnormal cycles). Abnormalities encountered in these data include but are not limited to oscillatory voltage or current transients, multi-cycle over-current events, and low-level current bursts. A few examples of abnormal events and the corresponding residuals calculated by using the method described in Section 4.5.2 are shown in Fig. 96. A normal event has a form of waveform variation that does not exhibit electromagnetic or electromechanical transient characteristics. An example of normal event and the corresponding residuals calculated by using the method described in Section 4.5.2 are shown in Fig. 97. In this case, there is a burst of noise-like current variation. Based on the knowledge of various creditable power disturbances, such a waveform is unlikely to contain useful information, and this is why it is classified as a normal event.
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(a) sub-cycle low-level overcurrent
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(b) multi-cycle current sag
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(c) multi-cycle overcurrent
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(d) short-duration current burst


[bookmark: _Ref502852896]Fig. 96. Examples of abnormal events.
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[bookmark: _Ref502852901]Fig. 97. A typical normal event.
For the generic abnormality detection method, the number of cycles used for Gaussian distribution estimation of noise characteristics (NG) is 10, the number of cycles used for steady-state components estimation (NH) is 1 and the number of cycles in the detection window (Nd) is 1. For the differential waveform RMS method, M is set to be 8.
The PD versus PFA curves obtained after applying the three abnormality detection methods to the field data are shown in Fig. 98. One can observe that the generic abnormality waveform detection method described in Section 4.5 has clear advantage over the other two methods. At the false alarm probability of 2%, generic waveform abnormality detection method has 74.8% detection rate, while the detection rates of the differential waveform RMS method and of the MAVSA method are 59.5% and 27.4%, respectively. At the detection probability of 90%, generic waveform abnormality detection method has 10.7% false alarm rate, while the false alarm rates of the other two methods are 42.8% (differential waveform RMS method) and 85.9% (MAVSA method).
[image: ]
[bookmark: _Ref502853068]Fig. 98. Performance assessment of three different abnormality detection methods.

[bookmark: _Toc457761964][bookmark: _Toc514428242]Performance evaluation based on number of detected events
Performance evaluation of the three considered methods is also conducted in the following three datasets (each dataset contains 5-day gapless data):
· Dataset 1: measured from the system shown in Fig. 95;
· Dataset 2: measured from 11 SUB shown in Fig. 99, with the measurement setup shown in Table 9;
· Dataset 3: measured by using the data described in Section 4.4.2.

Both the three-phase currents and zero-sequence current are employed in the abnormality detection tests. The false alarm probability is set to be 15 / NKLD, where NKLD = 5184000 is the number of cycles per day, to control the number of detected events to be around 15 per day on average. For the three different detection methods considered in this performance assessment, the average number of events per day is shown in Table 10. Results show that the method described in Section 4.5 (generic waveform abnormality detection method) can detect more events than the other two methods from Dataset 1 and Dataset 2.
However, for Dataset 3, the differential waveform RMS method can detect more events than the generic waveform abnormality detection and the MAVSA methods. A more detailed analysis of this dataset has revealed that there is a significant number of automatic meter reading (AMR) signals in the data, as shown in Fig. 100. The existence of AMR signals can affect the threshold selection of the generic waveform abnormality detection method by increasing it. As a result, the generic waveform abnormality detection method does not detect some events. There are two possible alternatives to further improve the sensitivity of this method: one is to reduce the detection window if the sampling frequency is sufficiently large; the other one is to increase the allowable false alarm probability adopted in the threshold selection.


[bookmark: _Ref502853136]Fig. 99. System diagram from where Dataset 2 were measured.
[bookmark: _Ref502853161]Table 9. Measurement setup for Dataset 2.
	
	Dataset 2

	Measured signals
	Three-phase voltage and current data at one end of a 13.8 kV distribution cable

	Sample points per cycle
	64

	Sampling mode
	Continuous



[bookmark: _Ref502853234]Table 10. Number of detected events per day.
	Methods
	Generic abnormality method
	Differential waveform RMS method
	MAVSA method

	Dataset 1
	20
	16
	15

	Dataset 2
	22
	14
	13

	Dataset 3
	33
	47
	16
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(a) current waveform and residuals
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(b) residual pdfs


[bookmark: _Ref502853295]Fig. 100. Sample AMR signals and residuals calculated by using the generic waveform abnormality detection method.
[bookmark: _Ref502846006][bookmark: _Toc514428243]SUMMARY AND CONCLUSION
The wide spread use of power quality monitoring tools in recent year have enabled utility companies to extract non-power-quality information from the PQ monitor data. A high potential use of such data is the equipment condition monitoring, as many equipment failures present unique signatures in the voltage and current waveforms. 
In order to support the research and application of using PQ data analytics for equipment condition monitoring, this document has provided a set of equipment failure signatures collected from various sources. They are discussed in comparison with the signatures of power quality disturbances. The results show that equipment failure signatures have diverse characteristics in terms of time scales and patterns. The signatures are mostly visible in current waveforms. Methods developed for detecting power quality disturbances are not adequate to capture equipment failure related disturbances.
This document also discussed the research needs in the area of PQ data (disturbance) analytics for equipment condition monitoring. It is likely that a general-purpose condition monitoring system will involve several steps. The first step is to detect the existence of waveform abnormality. The second step is to extract the waveforms associated with the abnormality. The third step is to analyze the extracted waveforms to determine the cause of abnormality and if equipment failure is involved. The fourth step is to determine the characteristics of equipment failure such as the location of an incipient failture. Another possible path is to develop signature-specific monitoring systems such as one dedicated for incipient cable failure monitoring. They may be called special-purpose condition monitoring systems. Both approaches are shown in Fig. 101.

[image: ]
[bookmark: _Ref502766167]Fig. 101. Two possible paths towards signature-based condition monitoring systems.
An important initial step for the general-purpose condition monitoring system (first path) is to develop a method to detect any forms of waveform abnormality. To this end, this report has presented an overview on some of the published methods. It explained an illustrative method for the purpose of demonstrating the requirements and results of waveform abnormality detection methods. A recent progress towards a rigorous and systematic approach to abnormality detection is also presented. It is hoped that the information will motivate further research in the field.
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[bookmark: _Toc514428245]POSITIVE-GOING ZERO CROSSING POINT DETECTION AND FREQUENCY VARIATION CORRECTION
Zero crossing point and frequency variation correction are essential steps when applying the disturbance detection methods discussed in Section 4. They are discussed in detail in this appendix. 
[bookmark: _Toc457761971][bookmark: _Toc514428246]Positive-going Zero Crossing Point Detection
The recommended zero-crossing point detection is explained as follows:
· Step 1: Select one cycle of the sampled waveform. If the sampling frequency is N points per cycle, this corresponds to selecting N points of the sampled data, x(1), x(2), …, x(N);
· Step 2: Identify the sample with the minimum value among the N sampled values. The value should be negative. The corresponding sample number is recorded as, for example, k;
· Step 3: Check the values of x(k+1), x(k+2), …, x(N). The first data sample with a positive value is the positive-going zero-crossing point.
If a waveform contains multiple zero-crossing points due to, for example, large harmonic distortions, the first positive-going zero-crossing point is regarded as the correct point.
[bookmark: _Toc457761972][bookmark: _Toc514428247]Frequency Variation Correction
The operating frequency of a power system normally fluctuates within a narrow range and may not be always exactly constant at 60 Hz. Such frequency variation leads to an error when two cycles of a waveform are subtracted. The error caused by frequency variation is illustrated in Fig. 102.
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[bookmark: _Ref502899589]Fig. 102. Impact of frequency variation on sample locations.
The waveform is sampled at a rate of approximately 9 samples per cycle (N=9). If the second cycle is subtracted from the first cycle simply according to the sample locations, one will obtain the following differential waveform:
	

	26



For example, if k=1, the subtraction is performed between x(10) and x(1). It can be clearly seen that x(10) is not at the same phase as that of x(1). As a result, such a subtraction will cause errors; Δx(k) will not be zero even if the two cycles are identical. The correct approach to subtract the two cycles is:
	

	27


where x’(k) is the estimated sample value on the first cycle. The sample must have the same phase angle as that of x(N+k). x’(k) can be estimated by using linear interpolation on its two adjacent samples. In this example, the two adjacent samples are x(1) and x(2).
A more precise description of the above correction method and its implementation procedure are presented below. It assumes that the frequency is constant during the 5 to 10 cycles period where the subtraction takes place. Fig. 103 shows the parameters associated with the method. In this figure, 
	N
	the number of samples per cycle;

	ZC1
	the first zero-crossing sample;

	ZC2
	the second zero-crossing sample;

	A1
	the sample closest to the ZC1 and with a negative value;

	A2
	the sample closest to the ZC2 and with a negative value;

	τ1
	the fraction difference between samples A1+1 and ZC1 (0 ≤ τ1 ≤ 1);

	τ2
	the fraction difference between samples A2 and ZC2 (0 ≤ τ2 ≤ 1);

	D
	the sample difference between samples A1+1 and A2, D = A2-(A1+1);

	Nw
	the actual number of samples of the reference cycle, Nw = D + τ1 + τ2.



[image: ]
[bookmark: _Ref502903649]Fig. 103. Parameters for frequency variation correction.

A reference cycle is the one that is used to subtract other cycles. For the example of Fig. 102, it is the first cycle. The procedure for the frequency variation correction is as follows:
1. Determine the exact zero-crossing point ZC1 of the reference cycle. The location of ZC1 lies between a sample with a negative value A1 and the next sample with a positive value A1 + 1. These two values can be used to determine the exact ZC1 location through linear interpolation. The result is the fraction difference between samples A1 + 1 and ZC1, which is labeled as τ1;
2. A similar procedure can be carried out to determine the next zero-crossing point ZC2. The value of ZC2 lies between sample points A2 and A2 + 1. The result is the fraction difference between samples A2 and ZC2;
3. The precise period of the waveform, Tw, can then be calculated from:
	

	28


where ΔT =1/(N.60). In other words, the precise frequency of the waveform is equal to 1/Tw = 60.N/Nw. If Nw > N, the actual frequency is less than 60Hz and if Nw < N, the actual frequency is greater than 60Hz;
4. With the above parameters, the residual waveform can then be calculated. For example, if one wants to compute the residual value for any sample, the equation is:
	

	29


where x’ref(k) is the value of the reference cycle that shall be used to subtract x(k).
5. The first step to find x’ref(k) is to compute the time difference between x(k) and the exact zero crossing point of the reference cycle, ZC1, as follows:
	

	30


The number of cycles separating the two instants is:
	

	31


Note that Ndiff is not an integer. Its remainder, denoted as NR, represents the sample location where x’ref(k) should be calculated. NR resides between 0.0 to 1.0. If NR = 0.5, it means that x’ref(k) is located at the exact mid-point of the reference cycle;
6. The NR value can then be used to identify the two adjacent samples of xref that should be used to calculate x’ref(k). To accomplish this, it is first necessary to compute N’R as follows:
	

	32


The value of N’R will reside between two integers. These two integers are recorded as K1 and K2. The remainder of N’R is recorded as τ. For example, if N’R = 5.34, one will have K1 = 5, K2 = 6 and τ = 0.34. The value of x’ref(k) is computed from linear interpolation of xref(K1) and xref(K2) as shown in Fig. 104. The equation is as follows:
	

	33


If K1 = 0, the first point is the ZC1 so the value of xref(K1) = 0. If K1 is the last sample of the reference cycle, the interpolation should take place between K1 and ZC2.
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[bookmark: _Ref502903762]Fig. 104. Determining the value of x’ref(k).

[bookmark: _Ref502851356][bookmark: _Toc514428248]STEADY-STATE COMPONENTS ESTIMATION
Within the period of a few cycles, the steady-state components can be assumed to be approximately the same. As such, it is reasonable to estimate the steady-state components of the current cycle from the previous one or several cycles, which are referred to as the reference cycles. Let NH be the number of reference cycles used for the steady-state components estimation.

By applying FFT to the current samples of the NH reference cycles, estimates of the magnitudes and phase angles of the steady-state components can be obtained, which are denoted as Âk and , for k = 0, 1, …, K. Under the assumption that there is no fluctuation in the operating frequency, the steady-state components of the current cycle can be estimated as:
	

	34



In reality, however, operating frequency fluctuation is always present. To accommodate this for better detection performance, the operating frequency is first estimated through a one-dimensional search. Let fr be the operating frequency of the current cycle. Usually its value is within a narrow range around fn, which can be denoted as [fmin, fmax]. A grid search is conducted over this range to encounter the frequency that leads to the best match with the signal of the current cycle in terms of energy. This best match is obtained when the error signal, which is the signal of the current cycle subtracted by the estimated steady-state components, has the smallest energy, or equivalently, the smallest RMS. The motivation behind the method is that the energy of the current signal is dominated by its steady-state components.
Without loss of generality, let the time origin t = 0 be the instant when the cycle of interest starts. The total number of samples of one cycle is N0. Thus, the samples of the cycle of interest are i(lΔt) for l = 1,…,N0. The energy of the error signal if the operating fundamental frequency is f can then be written as:
	

	35


The operating fundamental frequency search can be mathematically represented as:
	

	36



Thus, the following estimate of the steady-state components can be obtained:
	

	37



By subtracting the steady-state components from the measured current signal, the residual signal is obtained as:
	

	38



The hypothesis test formulation is then simplified into the following:
	

	[bookmark: _Ref502907178]39

	
	

	

	[bookmark: _Ref502907181]40



If the steady-state components estimate is precise, n(t) in 39, 40 will be the same as n(t) in 16, 17. If the estimate contains error, n(t) in 39, 40 will contain both the random noise and the estimation error. It models the overall random component in the residual signal.
Theoretically, variations in both the power system frequency and the sampling frequency can affect the estimation of steady-state components. However, the impact of the power system frequency variation is usually much stronger. Thus, in this work, only the impact of system frequency is considered; the variation of the sampling frequency is neglected. The following studies have been conducted to validate the assumption that power system frequency variation features a much stronger impact on steady-state components estimation than sampling frequency variation.
Using one-hour field data, the trends of both the power system frequency and the sampling frequency are calculated (using GPS clock). Results outline that the largest deviation from the nominal power system frequency is 0.05 Hz. Based on these parameters, synthesized data (i.e., simulation in Matlab) is employed to analyze the effect of the two kinds of variations on the estimation of the steady-state components. The following model is used:
	

	41


where n is the sample index, fr is the fundamental frequency, fs is the sampling frequency, φk is the phase angle of the k-th harmonic, and ω(n) is the white Gaussian noise. It is considered that a1 = 1, a3 = 0.02, a5 = 0.03, a7 = 0.01, a9 = 0.02, SNR = 50 dB. Without loss of generality, φk are set to 0. The following three cases are considered: (1) fr = 60 Hz, fs =64*60 =3840 Hz; (2) fr =60.05 Hz, fs = 64*60 = 3840 Hz; (3) fr = 60 Hz, fs =64*60 - 0.52 = 3839.48 Hz. Case 1 is the perfect case with no variation; Case 2 has 0.05 Hz variation in the power system frequency while the sampling frequency is perfect; and Case 3 has 0.52 Hz variation in the sampling frequency while the power system frequency is perfect.
The behavior of estimated residuals, which is presented in Fig. 105, can be used to evaluate the quality of the steady-state components estimation. One can see from this figure that the impact of the system frequency variation is much higher than the sampling frequency variation. Thus, in this work, only the former impact is considered; the latter impact neglected. To avoid the significant effect of system frequency variation, a frequency variation correction strategy is proposed. Fig. 105 reveals that, with the correction, the error in the residual estimation is greatly reduced.
[image: ]
[bookmark: _Ref502907558]Fig. 105. Residuals under different cases.

[bookmark: _Toc514428249]EMPIRICAL GENERATION OF THE RESIDUAL PROBABILITY DENSITY FUNCTION

In this appendix, it is explained how the probability density function (pdf) that describes the residual measurement data is obtained. One shall first recall that the residual measurement data is the difference between the actually measured samples of the current and the estimated steady-state components of this measured current. If Nd is the number of cycles of the current data used for the abnormality detection and N0 is the number of data points collected per cycle, there will be N0Nd data points in a detection window. The residual samples of the detection window are denoted as , where
	

	42


is the r-th point in the l-th cycle of the residual data. Δt is the time interval between two residual samples.

Kernel density estimation is then employed to obtain the probability density function (pdf) that better characterizes this residual dataset. This method estimates the pdf by using a finite number of independent and identically distributed (i.i.d.) samples of the residual dataset under study [29]. It has the same basic principle of the histogram but possesses more appealing properties such as the smoothness. Given the discrete samples , kernel density estimation of the pdf of the residual data will be:
	

	[bookmark: _Ref502908135]43


where K(x) is the kernel function and h is the bandwidth (or smoothing parameter). The kernel function is a zero-mean pdf, implying that it is non-negative, and it integrates to 1. Common kernel functions include uniform, triangular, biweight, Epanechnikov, and Gaussian distribution functions. In this method, the standard Gaussian distribution function is adopted due to its convenient mathematical properties. The bandwidth h is a positive parameter. Its value affects the smoothness and precision of the kernel density estimation. For a Gaussian random variable, the optimal choice of h has been proved to be [29]:
	

	44


where σ is the standard deviation of the samples.
[bookmark: _Toc514428250]DISTANCE MEASURE
In this appendix, the statistical deviation measure between two pdfs is explained. To quantify the deviation between the measured data and underlying Gaussian distribution, the Kullback-Leibler divergence (KLD) from the estimated pdf of the measured residual samples to the theoretical Gaussian noise pdf is calculated. KLD is widely used in probability theory and information theory [27]. Let p(x) and q(x) be two pdfs. The KLD of q from p, denoted by DKL(p||q), is defined as [28]
	

	45




It provides a quantitative measure of the difference between q and p. It also equals the amount of information loss when using q to approximate p. Under normal operating condition, the theoretical pdf of the residual samples, f, is Gaussian, as given in 22. Normal (no abnormality) cycles immediately before the detection window are used to estimate the theoretical Gaussian function f. The pdf of the residual measurement data of a given detection window, , is obtained by employing the kernel density estimate as shown in 43. The deviation between the Gaussian distribution and the distribution of the observed event is then . The midpoint rule is used in the numerical integration performed to calculate KLD.
Prior to calculating the KLD, however, extra data processing steps must be conducted. Firstly, the current measurement samples are scaled so that the one-cycle-RMS values of the data are constant. The, the residual data is shifted so that the kernel density estimation has the same mean of the Gaussian distribution estimated with 22. This can be achieved through the following transformation of the original (unprocessed) current samples and the residual samples:
	

	[bookmark: _Ref502908279]46

	
	

	

	[bookmark: _Ref502908281]47



where the RMS(l) is the RMS value of the l-th cycle, il,r and xl,r represent the r-th current sample and r-th residue of the l-th cycle, respectively.  represents the mean value of the Gaussian distribution estimated with 22.

The underlying reason for these two extra steps is to account for small load variations. Small load variations are very common and frequent phenomena in power systems. They contain little information about utility equipment condition. Thus, in this work, small load variations are classified as normal operating condition and discarded, to avoid excessive alarm-raising and extra-sensitive detection. The transformation in 46 and 47 effectively avoids this problem. With the mean-shift and RMS-scaling, the calculated KLD value reflects mainly the shape difference of the two probability distributions f and .
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