Stainless Steel

Patrick Ho, P.Eng, Senior Engineer, Applied Materials

March 27, 2018
Outline

1. What is Stainless Steel?
2. Principles
3. Types and Grades
4. Challenges
What is Stainless Steel?
What is Stainless Steel?

- Alloy steels that have at minimum of 10.5 wt% of Chromium (Cr) content
- Chromium content prevents rusting = “stainless”
- Usually no more than 30% Cr or less than 50% iron
- Other alloy elements contribute to their properties
What is Stainless Steel?

- Discovered in the early 1900s by French, German and UK metallurgists
- Developed through the 20th century
- Improved production in 1970s through the argon-oxygen decarburization (AOD) process = more alloys, more widespread
- From aesthetic and consumer uses to industrial and medical uses.
What is Stainless Steel?

<table>
<thead>
<tr>
<th>Application</th>
<th>Percentage (2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial equipment</td>
<td></td>
</tr>
<tr>
<td>Chemical and power engineering</td>
<td>34</td>
</tr>
<tr>
<td>Food and beverage industry</td>
<td>18</td>
</tr>
<tr>
<td>Transportation</td>
<td>9</td>
</tr>
<tr>
<td>Architecture</td>
<td>5</td>
</tr>
<tr>
<td>Consumer goods</td>
<td></td>
</tr>
<tr>
<td>Domestic appliances, household</td>
<td>28</td>
</tr>
<tr>
<td>utensils</td>
<td></td>
</tr>
<tr>
<td>Small electrical and electronic</td>
<td>6</td>
</tr>
<tr>
<td>appliances</td>
<td></td>
</tr>
</tbody>
</table>

Source: https://matdata-s.asminternational.org/asm/CONTENT/MH/D09/A01/index.html/
What is Stainless Steel?
What is Stainless Steel?
Principles
Principles

• Stainless steel “rusts” and it’s a good thing!

• High chromium content reacts with environment and develops a adherent and very thin chromium-oxide layer on surface that protects
 • a.k.a. “Passive Layer”

• Similar to rust on carbon steel – but is tightly adherent and does not expand in volume

• Requires constant oxygen to form and maintain and self-heal

• If covered or oxygen depleted, it can rust similar to carbon steel – or worse depending on environment
Principles

Chromium Oxide

Iron Oxide (Rust)

Base Metal

Stainless Steel

Base Metal

Carbon Steel

Source: https://www.rolledalloys.com/technical-resources/environments/oxidation/
Principles

1. Chromium oxide layer protecting stainless steel
2. Chromium oxide layer damaged (by machining)
3. Chromium oxide layer reformed automatically

Source: https://cougartron.com/blog/best-passivation-method-stainless-steel/
Types and Grades
Types and Grades

Two production types:

• Wrought – hot worked, forged, ie. rolled sheet, most common
• Cast – poured into a mold, ie. investment cast

Five categories based on microstructure:

• Austenitic
• Ferritic
• Duplex
• Martensitic
• Precipitation-hardening
Austenitic

- Most common - “base” stainless steel
- Non-magnetic due to crystal structure (FCC)
- Easy to process and form for different uses
- Can have high Ni, Cr composition
- AISI Grade series: 200 and 300
- Typical grades: 304 and 316
- “L” designates low-carbon – better for welding

Source: https://www.azom.com/article.aspx?ArticleID=12731
Types and Grades

Ferritic

- Magnetic due to BCC crystal structure
- Can’t be heat treated
- Lower strength, but good SSC resistance
- Cheaper
- High chromium (Cr), low Ni
- AISI Grade series: 400
- Typical grades: 430 and 446

Source: https://www.azom.com/article.aspx?ArticleID=12731
Types and Grades

Duplex

- Magnetic
- Mix of austenite and ferrite
- Combines positives from austenitic and ferritic
- AISI Grade 329
- Typically UNS grades, specially designated or trade names (ie.

Source: https://www.azom.com/article.aspx?ArticleID=12731
Types and Grades

Martensitic

- Magnetic due to BCT crystal structure
- Heat-treated: Quench and tempered
- High yield strengths
- Low Ni, low Cr, higher Carbon content
- AISI Grade series: 400
- Typical grades: 410 and 420

Source: https://www.azom.com/article.aspx?ArticleID=12731
Types and Grades

Precipitation-hardening

- Known as PH alloys

- Addition of other elements (Cu, Ti, Al, etc.)

- Can be hardened by aging heat treatment

- Austenitic, semi-austenitic and martensitic types

- High yield strengths, better corrosion resistance than martensitic SS

- Typically UNS or trade name grades

Types and Grades

Things to note

- Don’t rely on the “magnet test”
 - only austenitic SS is non-magnetic
 - other types (ferritic, duplex and martensitic) becoming more common

- Each grade is designed for different types of service and environments
 - One grade may work well in one environment and not another

- IEEE transformer enclosures: 304L and 316L are specified
 - generally appropriate for most conditions
 - relatively cost-effective (easy to produce) vs more specialized grades
 - other grades should be considered based on severity of service environment
Challenges
Corrosion

- Stainless steel can be subjected to the same corrosion phenomena as carbon steels if the passive layer is removed.

- Design and service considerations have to be made to prevent corrosion – cannot rely on the material alone.

- Galvanic corrosion is the most typical for stainless steel due to lack of foresight.
Challenges

Galvanic Corrosion

- Dissimilar metals in contact
- Metal which is more active in the galvanic series corrodes
- Potentially rapid corrosion rates (driving force)
- Easy to remedy (replace or separate)

Dissimilar Metals

- Typically mild steel hardware in contact with the stainless steel

- Ensure all SS hardware and the tank is the same grade as the different grades of SS may have a different potentials

- Potentials can also change if the stainless steel loses its passive oxide layer – may accelerate corrosion rate!
Challenges

Source: https://commons.wikimedia.org/wiki/File:Stainless-steel-mild-steel.jpg
Iron Contamination

- Iron particles in dust or from contact with corroded steel

- Could be from the fabrication plant atmosphere, incorrect blast media, incorrect wire brush (i.e., steel used on stainless)

- Can initiate active corrosion – breakthrough of the passive layer

- Surface may look rusty

- Can transfer the contamination to contents (i.e., oil)
Challenges

Iron Contamination

• Passivation treatment after stainless steel components are assembled

• Acidic solution or gel, also called “pickling”

• Process: cleaned (remove grease, etc), put in solution/gel, water rinsed, repeat

• Helps build uniform and thicker chromium-oxide layer after exposure to oxygen
Challenges

Source: https://www.anopol.com/pickling/
Challenges

Welding

- Can be subject to “sensitization”

- High-temp can precipitate carbides at the grain boundaries which can promote intergranular corrosion

- Preferential attack at the weld heat-affected zones

- Lower carbon contents mitigate this effect

- Usually handled by using “L” grades of stainless (ie. 316L)
Challenges

Challenges
Challenges

Source: http://www.amteccorrosion.co.uk/stainlesssteel.html
Welding

- Can also cause crevice corrosion due to weld flux and entrained slags
- Lack of fusion creates “microfissures” or “hot cracks” which can allow accelerated corrosion

Source: https://www.researchgate.net/figure/Microphotograph-of-the-hot-crack-in-austenitic-weld-metal-30_fig5_250166825
Challenges

Coatings

- Emissivity concerns for transformer performance

- Stainless steels are typically very smooth, proper surface preparation is key

- Clean prep and paint environment to prevent iron contamination

- Blast media – no steel grit

- Entrained contaminants can lead to accelerated corrosion
Challenges

Coatings

- **Holidays may perform similar to steel if passive layer is missing**
 - Paint application may block the formation of a strong passive layer
 - Oxygen depletion in the holiday = minimal passive layer formation

- **Cost comparison vs well-coated steel enclosures**
 - More than 4 times the material cost at current prices
 - Additional cost of SS tank + hardware + coating for emissivity

- **Maintenance concerns – risk of galvanic corrosion from improper replacement hardware**

- **Cost vs. benefit**

Questions?

Patrick Ho, P. Eng.
Senior Engineer,
Applied Materials
patrick.ho@powertechlabs.com
(604) 590-6694
Thank You!

www.powertechlabs.com