

- Approximation 1µV \cong 1pC @ 100pulse/s & 150 Ω
- Not yet covered
- No bandwidth limits given
- No weighting curve (pulse train response)

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

IEC 270:1981 - Second Edition

- Main points introduced
 - Separating wide band and narrow band instruments
 - Risetime of $U_0 \leq 100$ ns, decay time > 100 µs
 - Circuit for measuring discharge power
 - Main points dropped
 - Partial discharge energy
 - Approximation 1µV \cong 1pC @ 100pulse/s & 150 Ω
 - Not yet covered
 - No bandwidth limits given
 - No weighting curve (pulse train response)

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

IEC 60270:2000 - Third Edition · Main points introduced - Transfer impedance Z(f) - input current / output voltage (which implies that the input is a current) - Weighting curve - pulse train response - Recommended bandwidth and corner frequencies - Wide: $30 \text{kHz} \le f_1 \le 100 \text{kHz}, f_2 \le 500 \text{kHz}$ 100kHz $\leq \Delta f \leq 400$ kHz - Narrow:9kHz $\leq \Delta f \leq$ 30kHz, 50kHz $\leq f_{\rm m} \leq$ 1MHz - Detailed calibration procedure

- Type and routine test for calibrators and instruments
- "Alternative calibration method", Annex A.3

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

IEC 60270:2000 - Amd1:2015

- · Main points introduced
 - Recommended bandwidth expanded
 - Wide-band: $30 \text{kHz} \le f_1 \le 100 \text{kHz}, f_2 \le 1 \text{MHz}$ $100kHz \le \Delta f \le 900kHz$
 - Further calibration method "step voltage response", Annex A.4
 - Tightened step voltage requirements $\Delta U \leq 0.03 \ U_0$ during $t_d \geq 5\mu s$ (steady state)
 - Test circuits for performance test of calibrators - Annex E showing block diagrams of PD measuring instrument principles
 - Annex H Test result evaluation with direct voltage PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

IEC 60270:202? – Fourth Edition

- Current progress
- First meeting of TC42/MT23 Oct 2017 (Canada)
- Intended meeting Jun 2018 cancelled
- Questionnaire sent to national committees
- Upcoming meeting Nov 2018 (Poland)
- Different views of future direction
 - Focus on charge-based low frequency
 - Adding non-conventional techniques (IEC 62478)
- Stability date
 - Currently 2020 (decision by TC42)
 - Meaning: stays unchanged at least up to 2020

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

Common detector principles

- Instrument with "quasi-integration" at a low pass filter and subsequent A/D conversion
- Instr. with early A/D conv. and digital post processing
- Instrument with active integration
- Instrument with "traditional" analog super heterodyne principle to allow both narrow and wideband detection

Influence of acquisition bandwidth Pulse response for "wide band" IEC60270 processing Upper corner frequency f₁ determines the rise time of the pulse response Lower corner frequency f₂ determines the decay time of the pulse response

 $t_2 =$

2f

2£.

- · Consequences:
 - Superposition errors (pulse pile-up)
 - Noise modulation
 - Dead-time issues
 - Max. repetition rate

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

16

Occurrence of partial discharge
 For the occurrence of partial discharge two conditions must be met:

 The local electric field must have reached the critical inception field (*E* > *E_{crit}*)
 A free electron must be available to start the discharge avalanche

 Two main processes to derive this initial electron:

 Ionization by photons
 Field emission

 The statistical properties of these processes control the appearance of the PD pattern

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gros

Provision of starting electrons

- Plenty free electrons on metallic surface immediate inception of partial discharge if E > E_{crit}
- Polymeric low energy surfaces (PE, PP, PTFE, etc.) offer literally no free electrons – ionization needed
- The sources of ambient radioactivity (cosmic photons, ²²²Rn, soil, fallout) cause ~2·10⁶ free electrons per second and cubic meter – delayed inception
- Hence, it takes in average 15 minutes until a spherical void of 1mm diameter is hit and discharge starts
- Common testing times of epoxy molded equipment often too short – dry-type transformers 3 minutes

PC57.113, Jacksonville, FL, October 16th, 2018 Detlev Gross

