

High-Temperature, Liquid-Immersed Transformers

Table 3 —Maximum continuous temperature rise limits for transformers with hybrid insulation systems

	Conventional system	Mixed hybrid insulation winding	Full hybrid insulation winding
Thermal class	120	130	130 / 140 / 155
Top liquid temperature rise [K]	65	65	65 / 65 / 65
Average winding temperature rise [K]	65	65	75 / 85 / 95
Hottest spot temperature rise [K]	80	90	90 / 100 / 115

C57.154

High-Temperature, Liquid-Immersed Transformers

Mineral oil and Esters with different insulation systems

IEC 60076-2 give different average winding rises on cooling type:

Table 1 – Temperature rise limits

Average winding (by winding resistance variation):

– ON.. and OF.. cooling systems 65K

– OD.. cooling system 70K

Items to be discussed:

25th Mach 2019

- Effect of cooling type (ON, OF, OD have different rises, gradient based on physics)
- Effect of liquid temperature class (effect of mixing materials with liquids e.g. increased thermal class of solid insulation material in esters)
- Effect of combination of Insulation systems, cooling type and liquid thermal class

High-Temperature, Liquid-Immersed Transformers

Suggested modifications on existing tables 3,...

			•
	Conventional system	Mixed hybrid insulation winding	Full hybrid insulation winding
Thermal class insul.	120 130 ^a	130	130 / 140 / 155
Liquid thermal class ^b	105°/125°/140°	105°/125°/140°	105°/125°/140°
Cooling type b	ON ^d /OF ^d /OD ^d	ON ^d /OF ^d /OD ^d	ON ^d /OF ^d /OD ^d
Top liquid temperature rise [K]	65 / <mark>? ^e</mark>	65 / <mark>? ^e</mark>	65 / 65 / 65 <mark>? ^e</mark>
Average winding temperature rise [K]	65 / <mark>? ^e</mark>	65 / <mark>? ^e</mark>	75 / 85 / 95 <mark>? ^e</mark>
Hottest spot temperature rise [K]	80 / <mark>? ^e</mark>	90 / <mark>? ^e</mark>	90 / 100 / 115 <mark>? °</mark>

C57.154

^a proposed additional thermal class (ester with thermally upgraded material

b proposed additional criteria / aspects on high temperature transformer application

^c proposed additional thermal class of insulation liquid (work of TF 1)

^d proposed additional cooling type

^e proposed additional rise limits based on new set of criteria's combinations