Condition Assessment of Power Transformers

Brian Sparling (CA) on behalf of WG A2.49 Members

The Focus

- The focus of Working Group A2.49 was to investigate information used to derive Transformer Assessment Indices, its' consolidation, and the uses to which the output can be utilized.
- Help identify transformers which most urgently need attention or intervention.
- To understand failure modes of transformers to assess the condition of the transformer.

Approach

- Transformer Assessment Indices (TAIs) can be generated by calculating a score, for each transformer in the fleet, then using the assigned scores to rank the transformers.
- The scores are calculated using an appropriate and sensible method, and using timely and accurate data, the asset manager can easily identify those transformers which most urgently need attention or intervention.
- An example of a scoring matrix, has been developed by the working group. This matrix effectively has five levels. (The 6th level - labelled F - is not used when generating a TAI but is noted to consider very-short term failure criteria)

Structure and setup of the Brochure

CONTENTS

1. INTRODUCTION – FUNDAMENTALS OF TRANSFORMER CONDITION ASSESSMENT
2. TRANSFORMER ASSESSMENT INDICES
3. REFURBISHMENT INDEX
4. DEALING WITH UNCERTAINTY IN INFORMATION
5. THE ROLE OF ON-LINE MONITORING SYSTEMS
6. CRITICALITY AND OTHER CONDITION CONSIDERATIONS
7. ESTIMATING A PROBABILITY OF FAILURE
8. TRANSFORMER ACTIVE PART
9. BUSHINGS AND CABLE BOXES
10. ON LOAD TAP-CHANGER (OLT), DE-ENERGIZED TAP-CHANGER (DETC)
11. COOLING SYSTEM, TRANSFORMER TANK AND ANCILLARY COMPONENTS
12. INSULATING LIQUID

ANNEX A TRANSFORMER CONDITION ASSESSMENT TABLES
ANNEX B HOW TO DEVELOP A TAI
ANNEX C LITERATURE OVERVIEW
ANNEX D ADDITIONAL INFORMATION FOR INSULATING LIQUIDS
ANNEX E REFERENCES

CONTENTS PAGE OF TB

- Chapters 1 to 7 introduces a process that can be used to assess a transformer and to develop Transformer Assessment Indices to suit the needs of the user.
- Chapters 8 to 12 and Annex A, details the FMEA for all the sub-components and methods of diagnosing their failure modes.
- ANNEX’S, provide the tables of diagnostic information, sourced from various IEC & IEEE Guides as well as Cigré TB’s, as well as expertise from the Working Group.
- Examples on how to develop a TAI
- An overview of some of the current documents that have been published about this topic and methodologies.

Conclusion

- This guide condenses a lot of information and knowledge into one document, that at the time of publication bears out what is known of failure modes, and methods of detecting the symptoms of these failure, and translate this into a format that can be applied across organizations.
- It is very important at the beginning to understand WHY and for what purpose a TAI will serve
- The user need not wait for full condition assessment to act if smoke is observed from transformers!

INTERNATIONAL COUNCIL ON LARGE ELECTRIC SYSTEMS

http://www.cigre.org

Transformer Failure Modes

- Identify the failure modes and failure mechanisms, consequences and interventions that can be implemented to change them.
- Failure mechanisms have been categorised into:
 1. Active part of the transformer into thermal, mechanical and dielectric.
 2. Bushings (and other terminals)
 3. Tap-changers
 5. Transformer dielectric fluid

*Note dielectric fluid has a special significance because it is not only critical to transformer operation and has deterioration mechanisms, but it influences the rate of deterioration of other parts most notably the solid insulation, and it provides a vector for much of the condition information.

- This guide does not address any economical evaluation of the different TAI purposes, it seeks to identify candidates for such evaluations.

Determine the Purpose of the TAI

- Identify the candidates that are in poor condition that *cannot* be easily repaired as these are candidates for replacement.
- To identify candidates in poor condition that *can* be easily repaired or major repair, or refurbishment.
- Ensure all users understand the purpose of the index so that it is not incorrectly used!!

If you are developing a Replacement Index

- What are the business/technical drivers for replacement in your organisation?
- If a Winding Temperature Indicator failed on your transformer – would you replace the transformer or replace the WTI?
- Do not include failure modes or mechanism in the Replacement Index if they are not drivers for replacement.

Likewise for other indices

- Deciding what to include is not always easy
- Should OLTC’s and bushings be included in a replacement index? These can often be replaced, but may not be economical if other work is required.

Example of Annex A TRANSFORMER CONDITION ASSESSMENT TABLE

<table>
<thead>
<tr>
<th>Transformer Failure Mode</th>
<th>Degradation Mechanisms</th>
<th>Condition Indicator</th>
<th>Test Unit</th>
<th>Minimum</th>
<th>Indicators</th>
<th>Index</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcing</td>
<td>Ablation, Electrical breakdown</td>
<td>Dissipation Factor</td>
<td>ppm</td>
<td>MO, SE</td>
<td>DGA</td>
<td>< 5</td>
<td>50, IEC 60422, C57.10</td>
</tr>
<tr>
<td>Partial Discharge</td>
<td>Moisture, Contamination of Insulation</td>
<td>Early Failure Mechanism</td>
<td>ppm</td>
<td>MO, SE</td>
<td>DGA</td>
<td>> 500</td>
<td>See insulation degradation failures</td>
</tr>
<tr>
<td>Moisture</td>
<td>Contamination of Insulation</td>
<td>Early Failure Mechanism</td>
<td>ppm</td>
<td>MO, SE</td>
<td>DGA</td>
<td>> 500</td>
<td>See insulation degradation failures</td>
</tr>
</tbody>
</table>

TAI is NOT for Alarm Management

- When diagnostic information indicates a serious or severe problem – an immediate response is required.
- Test results or other diagnostic information should be considered by an experienced transformer engineer and the appropriate action should be determined!
- A “Mitigated Index” may be useful in determining if the transformer should be repaired or maintained. Can be used to assess the transformer’s condition after one or more problems are mitigated.

Quality & Timeliness of the data

- Cautions are pointed out regarding data quality/timeliness to develop a QUALITY SCORE.
- Chapter 4 “Dealing with Uncertainty in Information”, is important to review

Dealing with Uncertainty

- The level of uncertainty is directly related to the quality and timeliness of the data used in the assessment. Unavailability or incorrect data, will adversely affect the result.
- An indication of the uncertainty should accompany an assessment or TAI, in the form of a Quality or Confidence score
- Uncertainty may be expressed using: an uncertainty index | a colour code | colour intensity | the TAI score can be shown as a range | TAI scores falls between a minimum and maximum.
Other Considerations

- On-line monitoring devices can be a valuable tool for the condition assessment of power transformers. The assessment can be updated more frequently as updated information becomes available from the monitoring devices.
- The consequence of a transformer failure will often need to be considered in conjunction with the condition assessment. Some of the consequences of a transformer failure are listed in Chapter 6.
- The assessed relative conditions of a fleet of transformers (e.g. from a TAI or PoF) can help identify the different families of transformers that have a higher probability of failure. This information can be useful in determining repair and replacement plans, and spare transformer holding levels for reliability and budgeting purposes.
- Users should be mindful of the complexity of calculating or estimating a probability of failure of a given apparatus and of the potential impact of other actions.

Methods of Calculating a TAI Score

- Summation of Individual FM Scores
- Weighted Average
- Non-linear mathematical Approach
- Numerical Score using PoF probabilities
- Worst case Approach
- Hybrid Score
- Count per Category
- Machine Learning

Each method is described together with advantages and disadvantages of each.

Examples of each scoring method and their limitations are detailed in the guide.

Conclusion

- This guide condenses a lot of information and knowledge into one document, that at the time of publication bears out what is known of failure modes, and methods of detecting the symptoms of these failure, and translate this into a format that can be applied across organizations.
- It is very important at the beginning to understand WHY and for what purpose a TAI will serve.
- Equally important is to share with others in your company, the purpose of and limitations of the assessments made.