BASICS of PDL and CJ Clark, Intellitech Corp.

how it works

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

Business-wise some have chosen to focus on EXTEST or the boundary register
- that is fine, it doesn’t change the original scope of 1149.1

1. Overview

1.1 Scope

This standard defines test logic that can be included in an integrated circuit to
provide standardized

approaches to

— testing the interconnections between integrated circuits once they have
been assembled onto a printed circuit board or other substrate;

— testing the integrated circuit itself; and

— observing or modifying circuit activity during the component's normal
operation.

The test logic consists of a boundary-scan register and other building blocks
and is accessed through a Test Access Port (TAP).

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

Some parts of 1149.1 have not addressed complexity of IC
design well to accomplish a) and c)
- i.e. Runbist

1.2.2 The use of IEEE Std 1149.1 to test an assembled product

This subclause outlines the use of the boundary-scan circuitry defined by
this standard during the process of testing an assembled product such as
a printed circuit board.

The test problem for any product constructed from a collection of
components can be decomposed into three goals:

a) To confirm that each component performs its required function;

b) To confirm that the components are interconnected in the correct
manner; and

c) To confirm that the components in the product interact correctly and
that the product performs its intended function.

While respect is provided to those who want to use just the EXTEST part of
the standard, the converse also must adhere for those who have
used the standard as it was originally described.

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

How PDL works:
Basic concept is that BSDL and package files are combined
to make a single IC database which is operated on by PDL
- Tool vendors combine single IC databases into board scan chains
- Tool vendors have had proprietary macros/languages before BSDL
this is not new or unproven territory

Pre-verified
P
I ' PDL
Register_Fields, Register_Fields,
Register_Mnemonics Register Mnemonics
Register_Assembly Register_Assembly
IC Level

Single IC DATABASE

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

A look at how PDL operates on scan database

init-data uu XX XX

CAPTURES fills in iExpected
RESETVALs on cells without PI fill in iExpected

Without any scans you may have expected data

init-data uu 0x11 XX
Tool vendors choice as to what to put in when nothing in field

DEFAULT and SAFE values can initialize iWrite field

init-data 0x01 Ox11 XX

after iWrite init-data 0x55, database holds 0x55

init-data 0x55 0x11 XX

During
Pattern
Generation
TDO is not
Looked at
As the UUT
Is not
Connected.

Tool provider is responsible for 'checks'/warnings if new iWrite data overwrites a SAFE value

(Default typically would not be a warning, but tool provider choice

after iRead init-data(1) 1, database holds 0x13

init-data 0x55 iEE@%%39 1 pDL tutorial - KWark,
Intellitech Corp.

Register_fields are just pointers to bits. iWrite mysinglebit O

init-data 0x54 Ox13 XX

Mnemonics of course can be used as well

init-data PCle Pass XX

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iProc init_setup is used to configure instance specific features of an IC.

Some init_setup steps are consistent from one instance to another.
- Ex: Turning PLLs off

Most likely all init_run iProcs are exactly the same from one instance to
another. Polling on a status bit for example

Several methods can exist to enable init_setup which are shown in the
following slides.

Design Engineer generates iProc from design environment
and passes custom BSDL, package files and PDL to test engineer
- this may not happen for years though

Ex: Xilinx BSDLAnno Design Data
(FPGA configuration,

Software IDE tools)

-generates instance
specific BSDL
(boundary register)

IC vendor design software

Packages

; ; Massage??
Register_Fields, Register_Fields, PDL
Register_Mnemonics Register_Mnemonics :
: : IProc
Register_Assembly Register_Assembly

Init_setup
_/ _/_

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

Test Engineer generates settings from BSDL aware GUI

BSDL @ Packages
PRO;0COL1(10) OFF 0000000000, 0000000000

I I PROTOCOLZ2 (10)

l 0000100000 0000100000

Register_Fields, Register_Fields, gl o o

. - . . . PLL (2) 10 10
Register Mnemonics Register_Mnemonics CAMBIST(2) 00 00
Register Assembly Register_Assembly cARSTATOS 2) oo e 0
- LBIST(2) RUN 00 00
LBISTSTATUS (1) 0 PASS PASS

MODESTATUS (1) 0 0 X

STATUS1(1) 0 PASS PASS

Single IC DATABASE

IProc init_setup

Massage??
PDL
IProc init_setup

No netlist says “PCle” in it. However, netlist can be used to optimize
49.1 PDL tutorial - CLClar

building of custom init_setupll%Fﬁwle test engi Oer_-B. tandard does not specify this 9

D

IP provided init_setup for 0. Parameters passed in
- not practical for 1000 I/0 with four parameters each

iProc init_setup { Proto Swing} {

iWrite Proto SProto
iWrite Swing SSwing
iApply

iMatchLoop -begin
iRead Status Ready
iApply

iMatchLoop -end

}

For optimization some merging would help
when this init_setup is called at a higher level

IP or IC provided init_setup for 10.

Parameters passed in for all I/0???
- not practical for 1000 I/O with multiple parameters each

iProc init_setup {101_Proto 101 _Swing102_Proto 102_Swing I03_Proto 103 _Swing 104 _Proto 104_Swing \

I05_Proto 105_Swing I06_Proto 106_Swing I07_Proto 107_Swing 108 _Proto 108 _Swing \

10998_Proto 10998_Swing 10999_Proto 10999_Swing 101000_Proto 101000_Swing } {

iWrite
iWrite
iWrite
iWrite

iWrite
iWrite
iWrite
iWrite

iWrite
iWrite
iWrite
iWrite

iWrite
iWrite
iWrite
iWrite

I01_Proto S$IO1_Proto
101_Swing SI01_Swing
102_Proto $I02_Proto
102_Swing S$I02_Swing

I03_Proto S$I03_Proto
I03_Swing SI03_Swing
I04_Proto S$I04_Proto
I04_Swing S$I04_Swing

I05_Proto S$IO5_Proto
I05_Swing SIO5_Swing
I06_Proto S$I06_Proto
I06_Swing SI06_Swing

I07_Proto S$IO7_Proto
I07_Swing SIO7_Swing
I08_Proto $I08_Proto
I08_Swing SIO8_Swing

. <many pages later>

;# PCle, SATA, SRIO
;# 200mv 300mv 500mv 800mv

iWrite 10999 Proto $10999 Proto
iWrite 10999 Swing $10999 Swing
iWrite 101000 _Proto $101000_Proto
iWrite 10100_Swing $101000_Swing

iApply

iMatchLoop -begin
iRead Status Ready

iApply

iMatchLoop -end

}

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

11

Large ICs can benefit from PDL1
- description is compact, still recorded out as flat binary tester commands
- IC vendor supplied init_setup
- what are the reasons we would not enable this?

iProc init_setup {} {
seti 0 ;#variable
while { Si < 988 }{

iWrite 10(Si).Pullup ON ; # register_field
iWrite 10(Si).ACMODE OFF ;# use DC /O only
iWrite 10($i).WEN ON

incri

}

iApply
}

PULLUP, ACMODE and WEN are registers
Register _assembly supports arrays of 1/0.

Each PDL routine may be executed sequentially _ o
] . Various optimizations
- must stop at iApply (leave in interpreter) Available to vendor

- execute next PDL Such as slicing board .
[, X Scan frame, then piecing
- At ‘last’ PDL perform iApply In tester format

- continue with first PDL

In memory

TDO
TDI ,
Single IC DATABASE Single IC DATABASE Single IC DATABASE

Record Scan Frames in Proprietary Iester Binary Format

(record separately register names/info tags as you wish for ‘simple’ diagnostics)

If one PDL ends before the others, then the scan frame data repeats
-For discussion: ‘merging’ is not ‘on’ by default — hence the iMerge command

Consider for init_setup or init_run iProc some may want it to be the default
[EEE 1149.1 PDL tutorial - CJ Clark,

1
Intellitech Corp. :

Use Models

PDLO iProcs

Designed for use with tester hardware

- memory behind pin, sequencer type with stim/exp/mask
“load and go” type operation
For use in Production or Field where database of BSDL info is not coupled to
Test application.
High-speed - hardware comparison - TDO data is compared with expected and
masked by X bits

iProcs init_setup, init_run could be defined as PDLO only (potentially)
(some may view this as challenging and would like
the ability to use PDL1 to describe init_setup)

[EEE 1149.1 PDL tutorial - CJ Clark,

14
Intellitech Corp.

A PDL File for IC vendor XYZ’s ABCIC would be as follows

iPDLLevel 0 -version IEEE1149 1 2012 ; # level-0 PDL only
iProcGroup ABCIC ;# entity or package name -iProcTarget

iProc init setup { param } {

iWrite Corel PLL1l S$Sparam ;# REGISTER FIELD
iWrite Corel PLL2 Sparam

iWrite Core2 PLL1l S$Sparam

iWrite Core2 PLL2 S$Sparam

iWrite Reg ON ;# triggers just from a DR scan
iWrite RegEN ON ;#

iApply

iWrite RegEN OFF ;# required to leave init setup in non-triggered mode

iApply

}

this is the same for all ABCIC’s
iProc init run {} {

iRunLoop 10000 ; # 10,000 TCK cycle delay
iRead init status (1) Pass
iApply

this is the same for all ABCIC’s
iProc main {} {

}

iProc userdefined {} {

}

EOF IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

In memory:

ABCIC.init_setup
ABCIC.init_run
ABCIC.main
ABCIC.userdefined

15

P1687 and 1149.1
Tool is seeing:

_ o In memory:
iCall U3.init_setu

. ABCIC.main iWrite U3.Corel PLL1
(IOOk up u3 what it is ABCIC.userdefined iWrite U3.Corel PLL2
(ABCIC) ” iWrite U3.Core2 PLL1

ABCIC.init_setup

o iWrite U3.CoreZ PLLZ
ABCIC.init_run

And then call the iProc
Associated with it

In the context of U3.)
iRead U3.init_status(1)
iWrite U3.Corel PLL1

Strip proc name off, look up instance path type <entity or package file>
Pass the <instance path> to the proc formed by <entity or package file>.proc

OFF
OFF
OFF
OFF

iPDLLevel 0 —-version STD IEEE 1149 1 2012
iProcGroup U3 ; # Associate the following procs with U3

this procedure becomes U3.init setup internally to the PDL

interpreter
iProc 1nit setup { } {

U3.init setup ;# call IC vendor init setup

iWrite Clock 125Mhz ; # use of BSDL mnemonics

iWrite Voltage 0x40 ; # use of hex values

iWrite Protocol PCIe ; # use of BSDL mnemonics

iApply

Probably no

} way to automate
iProc main {} { everything.
U3.main ;# call on chip tests xyz Test engineers
#U3.membist ;# tool generates this commented out will still

;# test engineers enable have jobs

}
#end of file

Also In memory: In memory: U3.init_setup
U3.main

ABCIC.init_setup

ABCIC.init_run

ABCIC.main

ABCIC.userdefined

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

17

1149.1 Same. Operation. (Drop iTarget). However
- note loss of knowing type
- solution? Easier to use instance names has been suggested

iCall U3.main :# call instance U3 or ABCIC main????7??
iCall U3.init_setup ;# call instance U3 or ABCIC init_setup??????

Why -direct here?
(parameters come after iProc)

iCall =direct U3.main ;# call it directly no lookup
iCall U3.main
iCall U3.init_setup ;# call prebuilt init_setup for ABCIC

iCall -direct U3.init_setup ; # call instance specific init_setup

In memory: U3.init_setup Also In memory:

U3.main
ABCIC.init_setup

ABCIC.init_run
ABCIC.main
ABCIC.userdefined

1149.1 Are init_setup by default Merged?
up to tool vendor to merge or not merge init_setup?

init_run MUST be merged in WG current collective thinking

iCall U3.init_setup ;# call prebuilt init_setup for ABCIC
iCall -direct U3.init_setup ; # call instance specific init_setup

Can this be done to reduce?

iMerge —begin ; # reduce iApply
iCall U3.init_setup

iCall =direct U3.init_setup

iMerge -end

In memory: U3.init_setup Also In memory:

U3.main
ABCIC.init_setup

ABCIC.init_run
ABCIC.main
ABCIC.userdefined

iLoop/iUntil Loop in an iProc for U2?
- record the loop start in tester binary format, max count
- process Ul and U3 as usual
continue to next iApply (other choices don't seem to work
load same frame data repeatedly, clear expected data (XXX) on U1/U3
scan frame)
record same frame data only on PDL which ends for U1 and U3
- any PULSE1/PULSEO cells which take on 1 after 0 must be set back after iApply
- record end in tester binary format
- resume recording round-robin on each PDL/iProc

In memory

TDI 1R

Single IC DATABASE Single IC DATABASE Single IC DATABASE

)4

Record Scan Frames in Proprietary Tester Binary Format

[EEE 1149.1 PDL tutorial - CJ Clark,

2
Intellitech Corp. 0

iLoop/iUntil
- two examples in draft
- used for ‘rdy’ or ‘bsy’ type polling
- tools can merge or not merge as they see fit (not possible for init_run)
- iLoop can 'block' and other procs

would finish before loop section

i1Proc XYZ EXIO {} {
external voltage may be coming up or non-stable get
10 good readings before proceeding otherwise remaining tests may

have

1Loop -

iWrite
iWrite
iApply
iWrite
iApply
iRead

iApply
iUntil

#; VREF stable

}

failures due to instability
begin ;# repeat

ADDR VREFADDR
WE O
WE 1
;# register dump from OS
VREF-VOLTAGE 0xC2 ;# Loop to make sure VREF is stable

;# Error if any reading is incorrect
-nofail
-match

This is currently an 'implied -nofail'
(All iApply inside) suggest
iApply -nofail on appropriate ones

[EEE 1149.1 PDL tutorial - CJ Clark,

21
Intellitech Corp.

iWrite
iWrite
iApply
iRead

iWrite
iWrite
iApply
iRead

iWrite
iWrite
iApply

data 0x01
WE 1 ;# PULSEL

Status OxFF
data 0x02
WE 1

Status OxFE
data 0x03
WE 1

iMisMatchLoop 3 -begin
VREFADDR

iWrite ADDR
iWrite WE O

iApply
iWrite WE 1

iApply

iRead VREF-VOLTAGE 0xC2

iApply -nofail

iMisMatchLoop -end

iWrite
iWrite
iApply
iRead

iApply
iWrite
iWrite
iApply
iRead

iApply
iWrite
iWrite
iApply
iRead

iApply

data 0x01
WE 1 ;# PULSE1l

Status OxFF

data 0x02
WE 1 ;# PULSE1l

Status OxFE

data 0x03
WE 1 ;# PULSE1l

Status 0xFD

TDI

Single IC DATABASE

Single IC DATABASE

Single IC DATABASE

In memory

TDO

Record Scan Frames in Proprietary Tester Binary Format

[EEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

22

iMatchLoop/iMisMatchLoop

-Tool responsible for optimization (if any)

- Tool can simply stop at iM/iMM commands and finish other iProcs
- Tool can continue to merge (standard is silent on this)

-Tool responsible for practical limits (maxcnt = 9999997?)

-Note in U3, PULSE1 being reset to 0 to match cell return to 0

-PDL writers always need to verify/don't end in triggering states
-Tool can simply take diminutive case of maxcnt =1

-Tool responsible for exiting on failures/register dumps etc as desired

Ul U2 U3
Data Status WE ADDR WE VREF-VOLTAGE Data Status WE
0x01 XX 1 VREFADDR 0 XX 0x01 XX 1
automatic
0x02 OxFF 1 VREFADDR 1 XX 0x01 OxFF 0 « return
0x03 OxFE 1 VREFADDR 1 0XC2 0x02 XX 1 to O for
WE on
0x04 OxFD 1 VREFADDR 0 XX 0x02 OXFE 0 .
iApply
0x05 OxFC 1 VREFADDR 1 XX 0x03 XX 1 without
iWrite WE
0x06 OxFB 1 VREFADDR 1 0XC2 0x03 OXFD 0
0x07 OXFA 1 VREFADDR 0 XX 0x04 XX 1
0x08 OXF9 1 VREFADDR 1 XX 0x04 OXFC 0
0x09 OxF8 1 VREFADDR 1 0XC2 0x05 XX 1
explicit enable for WE' PDL rolled out into tester binary format

on each iApply

ifTrue/ifFalse - High-speed flow control
-Branching based on miscompare/compare of expected data

-Carol's pins need a check and exit (tester stop-on-fail is not guaranteed to be on)
- simple example, ignore argument on how many different package files and PDL can be delivered

as an alternative that is not scalable and requires more integration at top level
- Multiple file solution doesn’t work around problem that production

may have three or four versions of IP in production line or in field

across multiple ICs. We’d like the IP to deal with its own init_setup

variations to lower the downstream costs

iProc INIT SETUP {} {
iRead VERSION 0bO1l
iApply -nofail ;# tell tester OS not to dump register

1fTrue ;# The first version uses TERMI1
iWrite SWING 800mv
iWrite CMMV Test cm

iWrite UPD ON
iWrite TERM1 Test
iApply

ifFalse ;# Version 2 the bits are swizzled
iWrite SWING 600mv ;# max swing with this rev
iWrite CMMV Test cm
iWrite UPD ON
iWrite TERM2 Test ; # set the bits differently on this rev
iApply

ifEnd

iWrite UPD OFF ;# prevents further updates

J IEEE 1149.1 PDL tutorial - CJ Clark,

24
Intellitech Corp.

ifTrue/ifFalse -

High-speed flow control

- need to set failure in some cases

iProc INIT SETUP {} {
iRead Observe IO VSEL
iApply -nofail

0x13 ;# observe Freescale's strapping pins

(5 bit wvalue)

ifFalse ;# catastrophic

iWrite myreg -safe ;# example of setting value before failing/exiting
iApply

iSetFail -quit ; #all bets off, we need to tell tester to exit

ifTrue

iWrite xxxx

iApply
iRead =xxxx

iApply

1fEnd

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

25

ifTrue/ifFalse/ifEnd

- Record both ifTrue and ifFalse

- record command in tester format to "-nofail" on first iApply

- record iApply

- One option: Stop processing U1/U3 (there are some optimizations available)
choices: load same frame data on U2’s iApply and optionally
clear expected data (XXX) on U1/U3 scan frame
a) PULSE1/PULSEO cells which take on 1 after 0 must be set

- record tester’s binary command for branch-on-compare/miscompare

(branch address set when else and end command encountered)

- record scan frames for If, record tester binary command for else compare

- record scan frames for else

- record/set —end location + 1 for branch operations

Tester Memory

In memory Addr Ox44

Addr 0x80
TDI e

Single IC DATABASE Single IC DATABASE Single IC DATABASE

Addr OxFO

Record Scan Frames in PrqurEiggaryP'g@%gﬁaBiQja{lyr,format

Intellitech Corp. 26

this will be dumped

iWrite
iWrite
iApply
iRead

iWrite
iWrite
iApply
iRead

iWrite
iWrite
iApply

data
WE

Piece binary iApply together for U1/U3 for both ifTrue/ifFalse
- nofail means no register dump

-nofail??
erreg 0x02
ofail???

1

0x01
;# PULSE1

Status OxFF

data
WE

1

0x02

Status OXFE

data
WE

Single IC DATABASE

1

0x03

record
iApply

in other
PDLs to use
with
'else' if
present

need same
iApplys here
+any
additional

iRead VERS
iRead oth
iApply -n

ifTrue
iWrite
iWrite
iWrite
iWrite
iApply

ifFalse
iWrite
iWrite
iWrite
iWrite
iApply

ifEnd

iWrite UPD
iWrite SWI

iWrite TERM1
iWrite TERM2

ION 0b01

SWING 800mv
CMMV Test cm
UPD ON
TERM1 Test

SWING 600mv
CMMV Test cm
UPD ON
TERM2 Test

OFF
NG -safe
-safe
-safe

Single IC DATABASE

one iApply

iWrite
iWrite
iApply
iRead

iApply
iWrite
iWrite
iApply
iRead

iApply
iWrite
iWrite
iApply
iRead

iApply

data 0x01
WE 1 ;# PULSEL

Status OxFF

data 0x02
WE 1 ;# PULSEL

Status OxFE

data 0x03
WE 1 ;# PULSE1l

Status O0xFD

Single IC DATABASE

In memory

TDO

IEEE 1149.1 PDL

Record Scan Frames in Proprie

- CJ Clark,

ary Tester Binary Format

27

check

TRUE

FALSE

end

Recorded test binary format for both the ifTrue and the ifFalse
- tester has to have command to branch on miscompare with addr
- tester needs Jump command at ifFalse to jump over ifFalse

- when iftrue/iffalse/ifend is non-symmetric, tool needs to align

Data Status WE VERSION SWING CMMV UPD Terml Term2 Data Status WE
1 0x01 XX 1 XX safe safe OFF safe safe 0x01 XX 1
BNE 4 2 0x02 OxFF 1 0b01 safe safe OFF safe safe 0x01 OxFF 0
JMP 5 3 0x03 OxFE 1 XX 800mv test_ cm ON test (swizzled) 0x02 XX 1
4 0x03 OxFE 1 XX 600mv test cm ON (swizzled) test 0x02 XX 1
5 0x04 OxFD 1 XX safe test_ cm OFF safe safe 0x02 OXFE 0
6 0x05 OxFC 1 XX safe test_ cm OFF safe safe 0x03 XX 1
7 0x06 OxFB 1 XX safe test_ cm OFF safe safe 0x03 OXFD 0
8 0x07 OXFA 1 XX safe test_ cm OFF safe safe 0x04 XX 1
9 0x08 0XF9 1 XX safe test_ cm OFF safe safe 0x04 OXFC 0
10 0x09 OxF8 1 XX safe test_ cm OFF safe safe 0x05 XX 1

User developed INIT_SETUP iProc for an instance U3
-No IP provided init_setup iProc

-Since init_setup/init_run are pre-defined possible to
have them ‘iExported’ by default

iPDLLevel 0 -version STD IEEE 1149 1 2012 ; # level-0 PDL only
iProcTarget U3 ; # Associate the following procs with the instance of U3
iExport ; # indicate to user/tools these procs available

this procedure becomes U3.init setup internally to the PDL interpreter
iProc init setup {} {
iPrefix il

iWrite Clock 125Mhz ; # use of BSDL mnemonics
iWrite Voltage 0x40 ; # use of hex values
iWrite Protocol PCIe ; # use of BSDL mnemonics
iApply

}

this procedure becomes U3.init setup internally to the PDL interpreter
iProc init run {} {

iRunLoop 10000 ; # 10,000 TCK cycle delay
iPrefix il

iRead init status(1) Pass; # use of single register bit
iApply

}
#fend of file

Other use models of 1149.1
- 1149.1 is used in non-production segments of the industry

Interactive mode:

IC Characterization, Debug, lab bring up, system analysis,

IC to IC SERDES testing, IC to DDR memory testing, Working
With mixed signal devices (DACs and ADCs), voltage reading,
temperature reading, read-write-modify registers.

This mode requires use of iGET on -SO (return) data.

Protocol
Aware Testers

poD PEEN iy
Interactive PC

Testers and analyzers
USB based JTAG pods > 50K units

1. Overview

1.1 Scope

This standard defines test logic that can be included in an integrated circuit to

provide standardized approaches to

— testing the interconnections between integrated circuits once they have been

assembled onto a printed circuit board or other substrate;

— testing the integrated circuit itself; and

— observing or modifying circuit activity during the component's normal operation.
[EEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

30

1317

L

13176

What is PDL1?

PDL1 is these two commands (iGet and iGetStatus)

- note addition of -FAIL from Friday's meeting

+ All PDLO commands
+ TCL (Tool Command Language)

TCL has been around since late 1990s. Used in nearly all EDA tools,

both major FPGA vendors use TCL.

Table C-3—PDL Level-1 Commands

Command Parameters Purpose
<register= Return a TCL string representing the
1Get [-IN | -OUT | -EXPECT | -FAIL] value associated with a register in the
[-HEX | -BIN | -DEC | -MNEM] specified format.
iGetStatus [clear] Get t}.le pass/fail status smce the last

PPy [FEyE—— |
g LI TS CIeAT et

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

31

Safe and cool - how do we know?
PDLO only checks EXPECTED values. Not suitable for setting a range or <
less than or > greater than as all those values are not the expected

- can be used in 3D-SIC stacks as well.

vendor supplied reg to temp conversion
proc Reg2Temp { Sregval SCorF } {

} Corel Core2

iExport -begin

this proc returns a temperature and
high level warnings could be specified
iProc init-setup-temp-check { } {

iRead tempreg

iApply

set val [iGet tempreg]

convert reg value to temperature in celsius
set temp [Reg2Temp Sval CEL]

#if {temp > 70} { Core4 Core3
#puts "Temperature is excessive Stemp" — \ /
9 [

return temp e

} :7% w
I[EEE 1149. 1T PDLutortat - CJ Clar

Intellitech Corp.

32

AVS - automatic voltage scaling. Monitor mission mode operation
during characterization. While CPU can access voltage monitors, if
software is not prepared, 1149.1 is a convenient access mechanism to
monitor AVS during bring-up, functional test (idea from Dharma)

this proc returns a temperature and
high level warnings could be specified

proc Reg2voltage {} {

}

iExport -begin

iProc read-voltage{ } {

iRead voltagereg

iApply

set val [iGet voltagreg]

convert reg value to voltage
set volts [Reg2voltage Sval]

return volts

}

IEEE T149°TPDL tutorial - Cw

Intellitech Corp.

33

recent
letter

from DoD
contractors
to suppliers

Counterfeit parts continue to be a very well known problem

- ECID may not be just a 'value' to program in or to read out

Subject: Global IC and Hong Dark Suspect Counterfeit Electronic Parts

The attached correspondence from the United States Air Force indicates that Hong Dark Electronic
Trade Company a'k’a Hong Dark Electronic Co.. Ltd. a'k/a Hong Dark Electronics Co., Ltd. ak/a
Hongdark Electronic Co., Ltd. ak/a Hongdark Electronics Co.. Ltd. a’k/a Shenzhen Hongdark
Electronics Co., Ltd. a’k'a Hongdark Electronic a'k/a Hongdark Technology Co., Limited ak/a
Hongdark a'k/a Hong Xing Da Technology Co., Ltd. (collectively Hong Dark), Global IC Trading
Group, Inc_, and Global IC Trading Group. LLC (collectively Global IC) have been suspended from
government contracting and from directly or indirectly receiving the benefits of federal assistance
programs. In order for us to assess the impact of any potential counterfeit parts in our products,

1149.1 ECID can help!

PUF val SHA256

ECID

PUF = physically unclonable function (layout dependent)

SHA256 = Secure Hash Algorithm

IC

PUF & hash

IEEE 1149.1 PDmu orfal - ll l|ark,

Intellitech Corp.

34

Counterfeit parts continue to be a very well known problem
- ECID may not be just a 'value' to read out.

PUF val SHA256

iPDLLevel 1 -version STD IEEE 1149 1 2012
iProcGroup MNO ECID V1 ; # Associate the following procs MNO's ECID

this is a SHA256 on the ECID read value with
iProc SHA256Calc { data } {

;# too many details to show but needs PDL1
; # perhaps even external program call

}

this procedure reads MNO company's ECID IP
iProc ECID {} {}

iRead ECIDREADDONE 1

iRead ECIDPUF

iRead ECID Hash

#iRead ECID WaferNum .
fiRead ECID DieNum « IC vendor may not want to describe these
#iRead ECID ManuLocation registers (Optional)

iApply

set data [iGet ECIDPUF]
set ECIDHash [iGet ECID HASH]

set hashval [SHA256Calc S$data]

if {$hashval != S$ECIDHash} {
puts "ERROR: Read Hash Does Not Match Expected - Exp: ECIDHash, Act:S$hashval\n"
}

#this information may or may not get released

they are just numbers, so without a decoder ring, the data is

meaningless to end users

set WaferNum [iGet ECID WaferNum D]

set DieNum [iGet ECID DieNum D]

set ManulLocation [iGet ECID_ManuLocatloﬂtEE1149J_PDLtUtOHa|-CJCbrK

}
Intellitech Corp.

35

iProc allow additional routines from IC vendor for checking
- PDL1 used as a description language for constraints

iPDLLevel 1
iExport -begin
iProc check-values {} {

set vall [iGet -IN -MNEM swing] ; # 200mv, 400mv 800mv
set val2 [iGet -IN -MNEM protocol] ; # PCIe, SATA
if { Svall == "200mv" && Sval?2 == "SRIO" } {

puts "The I/0O can not be set to 200mv in SRIO mode"“
return FALSE; # instruct tool that check failed

[EEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp. 3

1.1 Scope
This standard defines test logic that can be included in an integrated circuit to

provide standardized approaches to
- testing the interconnections between integrated circuits once they have been

assembled onto a printed circuit board or other substrate;

Some tests cannot easily be described in PDLO
- some failing bits in SERDES test are tolerated
DDR memory tests, while slow speed tests can be done
through EXTEST, less faults can be detected and test time can be

unacceptable

External
MemBist

DDR

IEEE 1149.1 PDL tutorial \¢ CJ Clark,
. 37
Intellitech Corp.

PDLO Diagnostics:
- Register: DATA expected 0x55 received 0x40

1P | have diagnostic information, how do |
Provider communicate that to my customer?

IC | have diagnostic information and checks,
Provider on-chip tests to exonerate my IC how do
| communicate this?

Without a common language we have classic tower of Babel

IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp. 38

IEEE 1801 extends TCL with commands for describing power intent
- very much in alignment with this proposal
-P1687 potentially will include some form of PDL1

6.5.2 errorinfo

See the Tel command reference [B31].

6.6 add_domain_elements

Purpose | Aidd design elements to 8 power domain

add_domain_elements domam_name

Symtax . .
b -elements elemens_list

domam_name The power domain to modify.

Arguments | -elements element_Jist The list of desizn elements to add. The elements shall be referenced reladve
to the acve scope and are the descendents of the scope of the specified
power domain

Retnrn | Feturn 2 1 if successful or raise 3 TCL,_ERRCR if not POSSI ble Syntax errors
value . .
did not prevent the adoption
The add_domain_elements command provides the ability to separate the creation of a power domain from L 1
the specification of the elements contamed within 1t. This 15 simmlar to only specifying the elements using the Of TC In t h at Sta n d d rd
-elements option 1n the create_power_domain command (see 6.19). The effect of add_domain_elements _ H (H)
15 addifive, 12, a power domain consists of any elements specified in the create_power_domain command TC L I I ke BS D L or veri |Og

and those elements specified m any add_demain_elements commands. h as tO be ve rifi ed

It shall be an error if domain_name does not indicate a previously created power domain.
This command 15 semantically equivalent to

proc add domain elemente {dn elemente el} {

if { string equal $elemente "-elements® }{
create power domain $dn -update -elemente Sel
return 1 B

} elee {

return -code TCL ERRCR Y
-errorcode Secoda
ra

-2 info Seinfo

where any italicized arguments are implementation-defined.

[EEE 1149.1 PDL tutorial - CJ Clark,

o) : 39
Copyright @ 2009 IEEE. Al rights reserved. Intellitech COI’p. 43

IEEE 1801's entire syntax reference points to TCL
links in an informative annex bibliography
- precedence that we don't have to include all

Annex A syntaxin 1149.1, just the syntax of 1149.1 commands

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B2] IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Lﬂnguﬂge.?

[B3] ISO/IEC 8859-1, Information technology—=8-bit single-byte coded graphic character sets—Part 1:
Latin Alphabet No. 1.8

[B4] For a summary of Tcl language syntax, see the following Internet location:
http://www tel th/man/tel8 4/TelCmd.

[B5] For more details on using the Tel language, see the following Internet location:
http://sourceforge net/projects/tel/.

[B6] For more details on using the Liberty library format, see the following Internet location:
http//synopsys_ com/coi-bin/tapin/loginl ce1

[B7] Coding examples are available from the UPF WG World Wide Web site http://www accellera.org/upf/
references html

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iGet command is liked so much it was "brought" to P1687 before 1149.1 has voted

----- Original Message-----

From: Ted (Theodore) Eaton-SSI [mailto:t.eaton@ssi.samsung.com]

Sent: Wednesday, February 08, 2012 10:37 PM

To: Rearick, Jeff; hugh wallace@agilent.com; acrouch@asset-intertech.com; bill.bruce@siliconaid.com; Brian Turmelle;
hojun@cisco.com; Doege, Jason; jeffrey wilkerson@non.agilent.com; JF_Cote@mentor.com; Jpotter@asset-intertech.com;
Martin_Keim@mentor.com; mcoldewey@asset-intertech.com;

mlaisne@QUALCOMM.COM; szuo@QUALCOMM.COM; teaton@ieee.org; CJ Clark; carl.barnhart@SILICONAID.COM

Cc: ken.posse@avagotech.com

Subject: RE: Draft Chapter 8

All,

Here is the iGet command definition from the current 1149.1 draft for consideration.

iGet

<register> [IN | OUT | EXPECT] [HEX | BIN | DEC | MNEM]

Return a TCL string representing the value associated with a register in the specified radix.

My Thoughts

1. The default behavior of the PDL1 commands seems to be targeted for a

specific tester type. From my standpoint, most environments and PDL will be most interested in seeing the results of the
previous iApply rather than a history of the last N iApply operations. It seems to me that it would be better for

the iGet<*> commands to default to

a. Capture Active (the data of the last operation is available without
the use of iCaptureData).
a. iGetReadValues returns the result of the last iApply for a register.
(does these need to be the last iRead-iApply sequence, not sure).
b. iGetWriteValues returns that value of the last iWrite command to that
register
c. iGetExpectValues returns the value of the last iRead command to that
register

i.

If the last iRead did not have an expected value an X value is returned

ii.
If an iApply has been performed after the iRead, what is returned . Expect data is not sticky so I would assume the current
state of the registers expect data is X

b. Capture depth is 1 by default.

2. The Radix of the return value is not defined here. It seems that we

should have some switch/parameter available to allow the user to select a Radix (BIN/HEX/mnemonic/INT?)

3. 1149.1 has a similar process defined that seems more compact and may

be a good place that we can consolidate (I will provide the exact command specification when I get access)
4. We can leave the iCaptureData function available for memory behin

d
pin or other testers that can make use of a patt@¥#56J#¥%ﬂ %Eéﬂﬁﬁ§¥1@ufcgﬁékﬁgfault behavior would be defined as above.jq
Intellitech Corp.

mailto:t.eaton@ssi.samsung.com
mailto:hugh_wallace@agilent.com
mailto:acrouch@asset-intertech.com
mailto:acrouch@asset-intertech.com
mailto:acrouch@asset-intertech.com
mailto:bill.bruce@siliconaid.com
mailto:hojun@cisco.com
mailto:jeffrey_wilkerson@non.agilent.com
mailto:JF_Cote@mentor.com
mailto:Jpotter@asset-intertech.com
mailto:Jpotter@asset-intertech.com
mailto:Jpotter@asset-intertech.com
mailto:Martin_Keim@mentor.com
mailto:mcoldewey@asset-intertech.com
mailto:mcoldewey@asset-intertech.com
mailto:mcoldewey@asset-intertech.com
mailto:mlaisne@QUALCOMM.COM
mailto:szuo@QUALCOMM.COM
mailto:teaton@ieee.org
mailto:carl.barnhart@SILICONAID.COM
mailto:ken.posse@avagotech.com

Register_fields are just pointers to bits. iWrite mysinglebit O

init-data 0x54 0x13 XX

Mnemonics of course can be used as well

init-data PCle Pass XX

iGet returns data from each of the three fields.
set val [iGet -IN -MNEM init-data]
set val2 [iGet -EXP -MNEM init-data]
set val3 [iGet -OUT -HEX init-data] This type of operation
set val4 [iGet -FAIL -BIN init-data] would require access

puts “Sval Sval2 Sval3 Sval4” To UUT data
- output: PCle Pass OxXX ObXXXXXXXX

These operate on database only

42

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

For discussion: PDL1 ends up not being much different
- Consider iGet -OUT <regname> as non-merge-able
- iGet -IN and -EXP data is merge-able
-Requires use of TCL interpreter
-Instead of private compiler of PDLO
-math, expressions/branching all resolve into an iApply
on a populated scan frame

In memory

TDI A

Single IC DATABASE Single IC DATABASE Single IC DATABASE

¥

Record Scan Frames in Proprietary Tester Binary Format

[EEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp. 43

For consideration: Constraints can be described directly in PDL1

default value is ‘off’ for param check
iProc Constraints { { check OFF } } {

if { Scheck == ON } {

set vall [iGet -IN -MNEM DOMSELA] ; # DOM A ON
set val2 [iGet -IN -MNEM DOMSELB] ; # DOM B ON
if { $vall == "ON" && Sval2 == "ON" } {

puts "ERROR Domain A cannot be turned on when Domain B is on"
iWrite DOMSELA OFF

return FALSE ;# 1instruct tool init setup failed

return TRUE;
}

It does appear ‘sequential’ or ‘executable’ but the approach is essentially a
More robust form of the BSDL constraint attribute. Without the need for
The WG to create a language inside of BSDL

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

44

Describing constraints/conditions

One approach which has been used in the past

attribute REGISTER_CONSTRAINTS of mychip : entity is
“(DOMAINA == ON && DOMAINB == ON)”;

Need a language for operators: X% !+- /
And order precedence ()
- note we have just two registers, what about 3 or 4 or 10?

What about?

attribute REGISTER_CONSTRAINTS of mychip : entity is
“(REGA+1 && REGB)”; ;# math required

Sequential constraints REGA can’t be a 1 after being a 0 and REGB is
a 0? BSDL is a difficult place to describe these relationships

What happens when constraints not met? What is the error
message?

Merging with iMerge

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

46

Merging — used for reducing scan operations

PLL

provided by IP provider, ideally it would be

beneficial to have these optimized for INIT SETUP corel Core2
iPDLLevel 0 -version IEEE1149 1 2012 XYZz_CORE XYZz_CORE
iProcTarget XYZ CORE

iProc setpll { val } { g &
PLL-WE is 1 bit and PLLREG is 1 bit

iWrite PLL-WE O XYZ_l0
iWrite PLLREG $val

iApply

iWrite PLL-WE 1 E
iApply \ /
}

#end file

iPDLLevel 0 -version IEEE1149 1 2012 ; # level-0 PDL only
iProcTarget XYZ IO

iProc init setup { val } {

iWrite AC-MODE S$val

iApply

}

#tend file

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

47

iMerge
Discussion: Are iCalls merged automatically in init_setup or
init_run?

iPDLLevel 0 -version IEEE1149 1 2012
iSource XYZ CORE.PDL

iSource XYZ IO.PDL

iProcTarget XYZOxygen

iProc init setup { } {

iMerge -begin

iCall Ul.Corel.setpll OFF ;# XYZ CORE two iApply
iCall Ul.Core2.setpll OFF ;# XYZ CORE two iApply
iCall Ul.il.init setup OFF ;# XYZ IO one iApply
iMerge -end

}

#end of file .
reduces to two scan operatlons

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

48

PLL vendor does not know where PLL is in final IC

what PLL vendor knows

segsel
s1 PLL1 TDR

IC level init_setup
iProc init_setup {} {

This fails ‘ iCall Pll1.init_setup

iCall 10.init_setup
}

Like board level Scan Path Linkers, tool is
responsible for opening SEGSELs, turning
on DOMCTRL

Checking for OO on Power pins
and SEGSEL captures are catastrophic events
which a tool can know during tester binary

format recording and insert proper tester command

[EEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

#IP

iProc init_setup {}{
iWrite PLL OFF
iApply

}

This adds to work for end user:
iWrite s1 ON

iApply

iCall PLL1.init_setup

Tool manages access to TDR
Potentially in one iApply this is done

iApply is :

IR scan if required
DR to turn on Domains (if any)
observe DOM_EXT SEGSELs
DR - to open/capture power
on internal power domains
DR -to PLL

49

