
BASICS of PDL and
how it works

CJ Clark, Intellitech Corp.

1
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

1. Overview
1.1 Scope
This standard defines test logic that can be included in an integrated circuit to
provide standardized
approaches to
— testing the interconnections between integrated circuits once they have
been assembled onto a printed circuit board or other substrate;
— testing the integrated circuit itself; and
— observing or modifying circuit activity during the component's normal
operation.
The test logic consists of a boundary-scan register and other building blocks
and is accessed through a Test Access Port (TAP).

Business-wise some have chosen to focus on EXTEST or the boundary register

 - that is fine, it doesn’t change the original scope of 1149.1

2
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

1.2.2 The use of IEEE Std 1149.1 to test an assembled product
This subclause outlines the use of the boundary-scan circuitry defined by
this standard during the process of testing an assembled product such as
a printed circuit board.
The test problem for any product constructed from a collection of
components can be decomposed into three goals:
a) To confirm that each component performs its required function;
b) To confirm that the components are interconnected in the correct
manner; and
c) To confirm that the components in the product interact correctly and
that the product performs its intended function.

Some parts of 1149.1 have not addressed complexity of IC
design well to accomplish a) and c)
 - i.e. Runbist

While respect is provided to those who want to use just the EXTEST part of
the standard, the converse also must adhere for those who have
used the standard as it was originally described.

3
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Single IC DATABASE

BSDL

Register_Fields,
Register_Mnemonics
Register_Assembly

PDL0
IC Level

Packages

Register_Fields,
Register_Mnemonics
Register_Assembly

PDL0

Pre-verified

IP

PDL

4

How PDL works:
Basic concept is that BSDL and package files are combined
to make a single IC database which is operated on by PDL
 - Tool vendors combine single IC databases into board scan chains
 - Tool vendors have had proprietary macros/languages before BSDL
 this is not new or unproven territory

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

 iWrite (in) iRead (expected) TDO (OUT)
init-data UU XX XX

CAPTURES fills in iExpected
RESETVALs on cells without PI fill in iExpected

Without any scans you may have expected data
 iWrite (in) iRead (expected) TDO (OUT)
init-data UU 0x11 XX

Tool vendors choice as to what to put in when nothing in field

DEFAULT and SAFE values can initialize iWrite field
 iWrite (in) iRead (expected) TDO (OUT)
init-data 0x01 0x11 XX

after iWrite init-data 0x55, database holds 0x55
 iWrite (in) iRead (expected) TDO (OUT)
init-data 0x55 0x11 XX

Tool provider is responsible for 'checks'/warnings if new iWrite data overwrites a SAFE value
(Default typically would not be a warning, but tool provider choice

after iRead init-data(1) 1, database holds 0x13
 iWrite (in) iRead (expected) TDO (OUT)
init-data 0x55 0x13 XX

A look at how PDL operates on scan database

During
Pattern
Generation
TDO is not
Looked at
As the UUT
Is not
Connected.

5
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Register_fields are just pointers to bits. iWrite mysinglebit 0

 iWrite (in) iRead (expected) TDO (OUT)

init-data 0x54 0x13 XX

Mnemonics of course can be used as well

 iWrite (in) iRead (expected) TDO (OUT)

init-data PCIe Pass XX

6
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

7

iProc init_setup is used to configure instance specific features of an IC.

Some init_setup steps are consistent from one instance to another.
 - Ex: Turning PLLs off

Most likely all init_run iProcs are exactly the same from one instance to
another. Polling on a status bit for example

Several methods can exist to enable init_setup which are shown in the
following slides.

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

IC vendor design software

BSDL

Register_Fields,
Register_Mnemonics
Register_Assembly

Packages

Register_Fields,
Register_Mnemonics
Register_Assembly

PDL

iProc

init_setup Final

iProc

Massage??

Design Data
(FPGA configuration,
Software IDE tools)

Design Engineer generates iProc from design environment
and passes custom BSDL, package files and PDL to test engineer
 - this may not happen for years though

Ex: Xilinx BSDLAnno
-generates instance
specific BSDL
(boundary register)

8
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Single IC DATABASE

BSDL

Register_Fields,
Register_Mnemonics
Register_Assembly

Packages

Register_Fields,
Register_Mnemonics
Register_Assembly

PDL

iProc init_setup

PDL

iProc init_setup

Final

iProc

Massage??

No netlist says “PCIe” in it. However, netlist can be used to optimize
building of custom init_setup for the test engineer. Standard does not specify this 9

Test Engineer generates settings from BSDL aware GUI

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

 IP provided init_setup for IO. Parameters passed in
 - not practical for 1000 I/O with four parameters each

iProc init_setup { Proto Swing} {

iWrite Proto $Proto
iWrite Swing $Swing
iApply
iMatchLoop -begin
iRead Status Ready
iApply
iMatchLoop -end
}

For optimization some merging would help
when this init_setup is called at a higher level

10
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

 IP or IC provided init_setup for IO. Parameters passed in for all I/O???
 - not practical for 1000 I/O with multiple parameters each

iProc init_setup { IO1_Proto IO1_Swing IO2_Proto IO2_Swing IO3_Proto IO3_Swing IO4_Proto IO4_Swing \
 IO5_Proto IO5_Swing IO6_Proto IO6_Swing IO7_Proto IO7_Swing IO8_Proto IO8_Swing \
….
 IO998_Proto IO998_Swing IO999_Proto IO999_Swing IO1000_Proto IO1000_Swing } {

iWrite IO1_Proto $IO1_Proto
iWrite IO1_Swing $IO1_Swing
iWrite IO2_Proto $IO2_Proto ;# PCIe , SATA, SRIO
iWrite IO2_Swing $IO2_Swing ;# 200mv 300mv 500mv 800mv

iWrite IO3_Proto $IO3_Proto
iWrite IO3_Swing $IO3_Swing
iWrite IO4_Proto $IO4_Proto
iWrite IO4_Swing $IO4_Swing

iWrite IO5_Proto $IO5_Proto
iWrite IO5_Swing $IO5_Swing
iWrite IO6_Proto $IO6_Proto
iWrite IO6_Swing $IO6_Swing

iWrite IO7_Proto $IO7_Proto
iWrite IO7_Swing $IO7_Swing
iWrite IO8_Proto $IO8_Proto
iWrite IO8_Swing $IO8_Swing
.
. <many pages later>
.
iWrite IO999_Proto $IO999_Proto
iWrite IO999_Swing $IO999_Swing
iWrite IO1000_Proto $IO1000_Proto
iWrite IO100_Swing $IO1000_Swing

iApply
iMatchLoop -begin
iRead Status Ready
iApply
iMatchLoop -end
}

11
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Large ICs can benefit from PDL1
 - description is compact, still recorded out as flat binary tester commands
 - IC vendor supplied init_setup
 - what are the reasons we would not enable this?

 iProc init_setup { } {

set i 0 ;# variable
while { $i < 988 } {

iWrite IO($i).Pullup ON ; # register_field
iWrite IO($i).ACMODE OFF ;# use DC I/O only
iWrite IO($i).WEN ON
incr i
}

iApply
}

PULLUP, ACMODE and WEN are registers
Register_assembly supports arrays of I/O.

12 IEEE 1149.1 PDL tutorial - CJ Clark, Intellitech Corp. 2011-2012

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

TDI
TDO

Record Scan Frames in Proprietary Tester Binary Format
(record separately register names/info tags as you wish for ‘simple’ diagnostics)

Scan Frame

Each PDL routine may be executed sequentially
 - must stop at iApply (leave in interpreter)
 - execute next PDL
 - At ‘last’ PDL perform iApply
 - continue with first PDL

If one PDL ends before the others, then the scan frame data repeats
-For discussion: ‘merging’ is not ‘on’ by default – hence the iMerge command
 Consider for init_setup or init_run iProc some may want it to be the default

In memory

Various optimizations
Available to vendor
Such as slicing board
Scan frame, then piecing
In tester format

13
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Use Models

PDL0 iProcs

Designed for use with tester hardware
 - memory behind pin, sequencer type with stim/exp/mask
“load and go” type operation
For use in Production or Field where database of BSDL info is not coupled to
Test application.
High-speed - hardware comparison - TDO data is compared with expected and
masked by X bits

iProcs init_setup, init_run could be defined as PDL0 only (potentially)
 (some may view this as challenging and would like
 the ability to use PDL1 to describe init_setup)

14
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

A PDL File for IC vendor XYZ’s ABCIC would be as follows :

iPDLLevel 0 –version IEEE1149_1_2012 ; # level-0 PDL only

iProcGroup ABCIC ;# entity or package name -iProcTarget

iProc init_setup { param } {

iWrite Core1_PLL1 $param ;# REGISTER_FIELD

iWrite Core1_PLL2 $param

iWrite Core2_PLL1 $param

iWrite Core2_PLL2 $param

iWrite Reg ON ;# triggers just from a DR scan

iWrite RegEN ON ;#

iApply

iWrite RegEN OFF ;# required to leave init_setup in non-triggered mode

iApply

}

this is the same for all ABCIC’s

iProc init_run {} {

 iRunLoop 10000 ; # 10,000 TCK cycle delay

 iRead init_status(1) Pass

 iApply

}

this is the same for all ABCIC’s

iProc main {} {

.

.

}

iProc userdefined {} {

…

}

EOF

In memory:

ABCIC.init_setup
ABCIC.init_run
ABCIC.main
ABCIC.userdefined

15
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

In memory:

ABCIC.main
ABCIC.userdefined
ABCIC.init_setup
ABCIC.init_run

P1687 and 1149.1

iCall U3.init_setup

(look up u3 what it is
(ABCIC)
And then call the iProc
Associated with it
In the context of U3.)
iRead U3.init_status(1)
iWrite U3.Core1_PLL1

Strip proc name off, look up instance path type <entity or package file>
Pass the <instance path> to the proc formed by <entity or package file>.proc

16

iWrite U3.Core1_PLL1 OFF

iWrite U3.Core1_PLL2 OFF

iWrite U3.Core2_PLL1 OFF

iWrite U3.Core2_PLL2 OFF

Tool is seeing:

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iPDLLevel 0 –version STD_IEEE_1149_1_2012

iProcGroup U3 ; # Associate the following procs with U3

this procedure becomes U3.init_setup internally to the PDL

interpreter

iProc init_setup { } {

 U3.init_setup ;# call IC vendor init setup

 iWrite Clock 125Mhz ; # use of BSDL mnemonics

 iWrite Voltage 0x40 ; # use of hex values

 iWrite Protocol PCIe ; # use of BSDL mnemonics

 iApply

}

iProc main {} {

U3.main ;# call on chip tests xyz

#U3.membist ;# tool generates this commented out

 ;# test engineers enable

}

#end of file

In memory: U3.init_setup
 U3.main

Also In memory:

ABCIC.init_setup
ABCIC.init_run
ABCIC.main
ABCIC.userdefined

17

Probably no
way to automate

everything.
Test engineers

will still
have jobs

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

1149.1 Same. Operation. (Drop iTarget). However
 - note loss of knowing type
 - solution? Easier to use instance names has been suggested

iCall U3.main ;# call instance U3 or ABCIC main??????
iCall U3.init_setup ;# call instance U3 or ABCIC init_setup??????

iCall –direct U3.main ;# call it directly no lookup
iCall U3.main
iCall U3.init_setup ;# call prebuilt init_setup for ABCIC
iCall -direct U3.init_setup ; # call instance specific init_setup

In memory: U3.init_setup
 U3.main

Also In memory:

ABCIC.init_setup
ABCIC.init_run
ABCIC.main
ABCIC.userdefined

Why -direct here?
(parameters come after iProc)

18
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

1149.1 Are init_setup by default Merged?
 up to tool vendor to merge or not merge init_setup?

 init_run MUST be merged in WG current collective thinking

iCall U3.init_setup ;# call prebuilt init_setup for ABCIC
iCall -direct U3.init_setup ; # call instance specific init_setup

Can this be done to reduce?

iMerge –begin ; # reduce iApply
iCall U3.init_setup
iCall –direct U3.init_setup
iMerge -end

In memory: U3.init_setup
 U3.main

Also In memory:

ABCIC.init_setup
ABCIC.init_run
ABCIC.main
ABCIC.userdefined

19
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

TDI
TDO

Record Scan Frames in Proprietary Tester Binary Format

Scan Frame

 iLoop/iUntil Loop in an iProc for U2?
 - record the loop start in tester binary format, max count
 - process U1 and U3 as usual
 continue to next iApply (other choices don't seem to work
 load same frame data repeatedly, clear expected data (XXX) on U1/U3
 scan frame)
 record same frame data only on PDL which ends for U1 and U3
 - any PULSE1/PULSE0 cells which take on 1 after 0 must be set back after iApply
 - record end in tester binary format
 - resume recording round-robin on each PDL/iProc

 -
In memory

U2 U3 U1

20
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

iProc XYZ_EXIO {} {

external voltage may be coming up or non-stable get

10 good readings before proceeding otherwise remaining tests may

have failures due to instability

iLoop -begin ;# repeat

iWrite ADDR VREFADDR

iWrite WE 0

iApply

iWrite WE 1

iApply ;# register dump from OS

iRead VREF-VOLTAGE 0xC2 ;# Loop to make sure VREF is stable

 ;# Error if any reading is incorrect

iApply -nofail

iUntil -match

#; VREF stable

}

iLoop/iUntil
 - two examples in draft
 - used for ‘rdy’ or ‘bsy’ type polling
 - tools can merge or not merge as they see fit (not possible for init_run)
 - iLoop can 'block' and other procs

 would finish before loop section

21

This is currently an 'implied -nofail'
(All iApply inside) suggest
iApply -nofail on appropriate ones

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

22

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

TDI
TDO

Record Scan Frames in Proprietary Tester Binary Format

Scan Frame

In memory

U2 U3 U1

iMisMatchLoop 3 -begin

iWrite ADDR VREFADDR

iWrite WE 0

iApply

iWrite WE 1

iApply

iRead VREF-VOLTAGE 0xC2

iApply -nofail

iMisMatchLoop -end

iWrite data 0x01

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFF

iWrite data 0x02

iWrite WE 1

iApply

iRead Status 0xFE

iWrite data 0x03

iWrite WE 1

iApply

…

iWrite data 0x01

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFF

iApply

iWrite data 0x02

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFE

iApply

iWrite data 0x03

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFD

iApply

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iMatchLoop/iMisMatchLoop
-Tool responsible for optimization (if any)
- Tool can simply stop at iM/iMM commands and finish other iProcs
- Tool can continue to merge (standard is silent on this)
-Tool responsible for practical limits (maxcnt = 999999?)
-Note in U3, PULSE1 being reset to 0 to match cell return to 0
-PDL writers always need to verify/don't end in triggering states
-Tool can simply take diminutive case of maxcnt = 1
-Tool responsible for exiting on failures/register dumps etc as desired

23

Data Status WE ADDR WE VREF-VOLTAGE Data Status WE

0x01 XX 1 VREFADDR 0 XX 0x01 XX 1

0x02 0xFF 1 VREFADDR 1 XX 0x01 0xFF 0

0x03 0xFE 1 VREFADDR 1 0XC2 0x02 XX 1

0x04 0xFD 1 VREFADDR 0 XX 0x02 0XFE 0

0x05 0xFC 1 VREFADDR 1 XX 0x03 XX 1

0x06 0xFB 1 VREFADDR 1 0XC2 0x03 0XFD 0

0x07 0XFA 1 VREFADDR 0 XX 0x04 XX 1

0x08 0XF9 1 VREFADDR 1 XX 0x04 0XFC 0

0x09 0xF8 1 VREFADDR 1 0XC2 0x05 XX 1

U1 U2 U3

automatic
return
to 0 for
WE on
iApply
without
iWrite WE

PDL rolled out into tester binary format explicit enable for WE
on each iApply

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iProc INIT_SETUP {} {

iRead VERSION 0b01

iApply -nofail ;# tell tester OS not to dump register

ifTrue ;# The first version uses TERM1

 iWrite SWING 800mv

 iWrite CMMV Test_cm

 iWrite UPD ON

 iWrite TERM1 Test

 iApply

ifFalse ;# Version 2 the bits are swizzled

 iWrite SWING 600mv ;# max swing with this rev

 iWrite CMMV Test_cm

 iWrite UPD ON

 iWrite TERM2 Test ; # set the bits differently on this rev

 iApply

ifEnd

iWrite UPD OFF ;# prevents further updates

}

ifTrue/ifFalse - High-speed flow control
-Branching based on miscompare/compare of expected data
-Carol's pins need a check and exit (tester stop-on-fail is not guaranteed to be on)
- simple example, ignore argument on how many different package files and PDL can be delivered

 as an alternative that is not scalable and requires more integration at top level
 - Multiple file solution doesn’t work around problem that production
 may have three or four versions of IP in production line or in field
 across multiple ICs. We’d like the IP to deal with its own init_setup
 variations to lower the downstream costs

24
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

iProc INIT_SETUP {} {

iRead Observe_IO_VSEL 0x13 ;# observe Freescale's strapping pins (5 bit value)

iApply -nofail

ifFalse ;# catastrophic

iWrite myreg -safe ;# example of setting value before failing/exiting

iApply

iSetFail -quit ; #all bets off, we need to tell tester to exit

ifTrue

iWrite xxxx

iApply

iRead xxxx

iApply

ifEnd

}

ifTrue/ifFalse - High-speed flow control
 - need to set failure in some cases

25
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Record Scan Frames in Proprietary Tester Binary Format

 ifTrue/ifFalse/ifEnd

 - Record both ifTrue and ifFalse
 - record command in tester format to "-nofail" on first iApply
 - record iApply
 - One option: Stop processing U1/U3 (there are some optimizations available)
 choices: load same frame data on U2’s iApply and optionally
 clear expected data (XXX) on U1/U3 scan frame
 a) PULSE1/PULSE0 cells which take on 1 after 0 must be set
 - record tester’s binary command for branch-on-compare/miscompare
 (branch address set when else and end command encountered)
 - record scan frames for If, record tester binary command for else compare
 - record scan frames for else
 - record/set –end location + 1 for branch operations

26

Addr 0x44

Addr 0x80

Addr 0xF0

Tester Memory

iftrue

-ifalse

-end

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

record
iApply
in other
PDLs to use
with
'else' if
present

27
Record Scan Frames in Proprietary Tester Binary Format

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

Single IC DATABASE

PDL0

TDI
TDO

Scan Frame

In memory

U2 U3 U1

iRead VERSION 0b01 -nofail??

iRead otherreg 0x02

iApply -nofail???

ifTrue

 iWrite SWING 800mv

 iWrite CMMV Test_cm

 iWrite UPD ON

 iWrite TERM1 Test

 iApply

ifFalse

 iWrite SWING 600mv

 iWrite CMMV Test_cm

 iWrite UPD ON

 iWrite TERM2 Test

 iApply

ifEnd

iWrite UPD OFF

iWrite SWING -safe

iWrite TERM1 -safe

iWrite TERM2 -safe

iWrite data 0x01

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFF

iWrite data 0x02

iWrite WE 1

iApply

iRead Status 0xFE

iWrite data 0x03

iWrite WE 1

iApply

…

iWrite data 0x01

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFF

iApply

iWrite data 0x02

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFE

iApply

iWrite data 0x03

iWrite WE 1 ;# PULSE1

iApply

iRead Status 0xFD

iApply

need same
iApplys here
+ any
additional

Piece binary iApply together for U1/U3 for both ifTrue/ifFalse
 - nofail means no register dump

this will be dumped

one iApply

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

28

Recorded test binary format for both the ifTrue and the ifFalse
 - tester has to have command to branch on miscompare with addr
 - tester needs Jump command at ifFalse to jump over ifFalse
 - when iftrue/iffalse/ifend is non-symmetric, tool needs to align

Data Status WE VERSION SWING CMMV UPD Term1 Term2 Data Status WE

1 0x01 XX 1 XX safe safe OFF safe safe 0x01 XX 1

check BNE 4 2 0x02 0xFF 1 0b01 safe safe OFF safe safe 0x01 0xFF 0

TRUE JMP 5 3 0x03 0xFE 1 XX 800mv test_cm ON test (swizzled) 0x02 XX 1

FALSE 4 0x03 0xFE 1 XX 600mv test_cm ON (swizzled) test 0x02 XX 1

end 5 0x04 0xFD 1 XX safe test_cm OFF safe safe 0x02 0XFE 0

6 0x05 0xFC 1 XX safe test_cm OFF safe safe 0x03 XX 1

7 0x06 0xFB 1 XX safe test_cm OFF safe safe 0x03 0XFD 0

8 0x07 0XFA 1 XX safe test_cm OFF safe safe 0x04 XX 1

9 0x08 0XF9 1 XX safe test_cm OFF safe safe 0x04 0XFC 0

10 0x09 0xF8 1 XX safe test_cm OFF safe safe 0x05 XX 1

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iPDLLevel 0 –version STD_IEEE_1149_1_2012 ; # level-0 PDL only
iProcTarget U3 ; # Associate the following procs with the instance of U3

iExport ; # indicate to user/tools these procs available

this procedure becomes U3.init_setup internally to the PDL interpreter

iProc init_setup {} {
 iPrefix i1

 iWrite Clock 125Mhz ; # use of BSDL mnemonics

 iWrite Voltage 0x40 ; # use of hex values

 iWrite Protocol PCIe ; # use of BSDL mnemonics

 iApply

}

this procedure becomes U3.init_setup internally to the PDL interpreter

iProc init_run {} {

 iRunLoop 10000 ; # 10,000 TCK cycle delay

 iPrefix i1

 iRead init_status(1) Pass; # use of single register bit

 iApply

}

#end of file

User developed INIT_SETUP iProc for an instance U3
-No IP provided init_setup iProc
-Since init_setup/init_run are pre-defined possible to
 have them ‘iExported’ by default

29
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Other use models of 1149.1
 - 1149.1 is used in non-production segments of the industry

Interactive mode:

IC Characterization, Debug, lab bring up, system analysis,
IC to IC SERDES testing, IC to DDR memory testing, Working
With mixed signal devices (DACs and ADCs), voltage reading,
temperature reading, read-write-modify registers.

This mode requires use of iGET on -SO (return) data.

1. Overview
1.1 Scope
This standard defines test logic that can be included in an integrated circuit to
provide standardized approaches to
— testing the interconnections between integrated circuits once they have been
 assembled onto a printed circuit board or other substrate;
— testing the integrated circuit itself; and
— observing or modifying circuit activity during the component's normal operation.

 30

Protocol
Aware Testers

POD
Interactive PC
Testers and analyzers
 USB based JTAG pods > 50K units

UUT

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

31

What is PDL1?

PDL1 is these two commands (iGet and iGetStatus)
 - note addition of -FAIL from Friday's meeting
+ All PDL0 commands
+ TCL (Tool Command Language)

TCL has been around since late 1990s. Used in nearly all EDA tools,
both major FPGA vendors use TCL.

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

32

Safe and cool - how do we know?
PDL0 only checks EXPECTED values. Not suitable for setting a range or <
less than or > greater than as all those values are not the expected
 - can be used in 3D-SIC stacks as well.

Core1 Core2

Core3 Core4

POD

vendor supplied reg to temp conversion
proc Reg2Temp { $regval $CorF } {
…
…
}

iExport -begin
this proc returns a temperature and
high level warnings could be specified
iProc init-setup-temp-check { } {

iRead tempreg
iApply
set val [iGet tempreg]
convert reg value to temperature in celsius
set temp [Reg2Temp $val CEL]
#if {temp > 70} {
#puts "Temperature is excessive $temp"
#}
return temp
}
 IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

33

AVS - automatic voltage scaling. Monitor mission mode operation
 during characterization. While CPU can access voltage monitors, if
software is not prepared, 1149.1 is a convenient access mechanism to
monitor AVS during bring-up, functional test (idea from Dharma)

Core1 Core2

Core3 Core4

POD

this proc returns a temperature and
high level warnings could be specified
proc Reg2voltage {} {

}

iExport -begin
iProc read-voltage{ } {
iRead voltagereg
iApply
set val [iGet voltagreg]
convert reg value to voltage
set volts [Reg2voltage $val]

return volts
}

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

34

Counterfeit parts continue to be a very well known problem

 - ECID may not be just a 'value' to program in or to read out

PUF val SHA256

PUF & hash

POD

IC

recent
letter
from DoD
contractors
to suppliers

1149.1 ECID can help!

PUF = physically unclonable function (layout dependent)
SHA256 = Secure Hash Algorithm

ECID

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

35

iPDLLevel 1 –version STD_IEEE_1149_1_2012

iProcGroup MNO_ECID_V1 ; # Associate the following procs MNO's ECID

this is a SHA256 on the ECID read value with

iProc SHA256Calc { data } {

... ;# too many details to show but needs PDL1

 ;# perhaps even external program call

}

this procedure reads MNO company's ECID IP

iProc ECID {} {}

iRead ECIDREADDONE 1

iRead ECIDPUF

iRead ECID_Hash

#iRead ECID_WaferNum

#iRead ECID_DieNum

#iRead ECID_ManuLocation

iApply

set data [iGet ECIDPUF]

set ECIDHash [iGet ECID_HASH]

set hashval [SHA256Calc $data]

if {$hashval != $ECIDHash} {

 puts "ERROR: Read Hash Does Not Match Expected - Exp: ECIDHash, Act:$hashval\n"

}

#this information may or may not get released

they are just numbers, so without a decoder ring, the data is

meaningless to end users

set WaferNum [iGet ECID_WaferNum D]

set DieNum [iGet ECID_DieNum D]

set ManuLocation [iGet ECID_ManuLocation]

}

IC vendor may not want to describe these
registers (optional)

Counterfeit parts continue to be a very well known problem
 - ECID may not be just a 'value' to read out.

PUF val SHA256

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

iPDLLevel 1

iExport -begin

iProc check-values {} {

set val1 [iGet -IN -MNEM swing] ; # 200mv, 400mv 800mv

set val2 [iGet -IN -MNEM protocol] ; # PCIe, SATA

if { $val1 == "200mv" && $val2 == "SRIO" } {

 puts "The I/O can not be set to 200mv in SRIO mode“

 return FALSE; # instruct tool that check failed

}

}

iProc allow additional routines from IC vendor for checking
 - PDL1 used as a description language for constraints

36
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

37

1.1 Scope
This standard defines test logic that can be included in an integrated circuit to
provide standardized approaches to
- testing the interconnections between integrated circuits once they have been
 assembled onto a printed circuit board or other substrate;

DDR

PRBS Recvr

External
MemBist

Some tests cannot easily be described in PDL0
 - some failing bits in SERDES test are tolerated
DDR memory tests, while slow speed tests can be done
through EXTEST, less faults can be detected and test time can be
 unacceptable

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

38

IP
Provider

I have diagnostic information, how do I
communicate that to my customer?

PDL0 Diagnostics:
 - Register: DATA expected 0x55 received 0x40

IC
Provider

I have diagnostic information and checks,
on-chip tests to exonerate my IC how do
I communicate this?

Without a common language we have classic tower of Babel

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

39

IEEE 1801 extends TCL with commands for describing power intent
 - very much in alignment with this proposal
 -P1687 potentially will include some form of PDL1

Possible syntax errors
did not prevent the adoption
of TCL in that standard
 - TCL like BSDL (or verilog)
 has to be verified

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

40

IEEE 1801's entire syntax reference points to TCL
links in an informative annex bibliography
 - precedence that we don't have to include all
 syntax in 1149.1, just the syntax of 1149.1 commands

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

41

-----Original Message-----

From: Ted (Theodore) Eaton-SSI [mailto:t.eaton@ssi.samsung.com]

Sent: Wednesday, February 08, 2012 10:37 PM

To: Rearick, Jeff; hugh_wallace@agilent.com; acrouch@asset-intertech.com; bill.bruce@siliconaid.com; Brian Turmelle;
hojun@cisco.com; Doege, Jason; jeffrey_wilkerson@non.agilent.com; JF_Cote@mentor.com; Jpotter@asset-intertech.com;
Martin_Keim@mentor.com; mcoldewey@asset-intertech.com;
mlaisne@QUALCOMM.COM; szuo@QUALCOMM.COM; teaton@ieee.org; CJ Clark; carl.barnhart@SILICONAID.COM

Cc: ken.posse@avagotech.com

Subject: RE: Draft Chapter 8

All,

Here is the iGet command definition from the current 1149.1 draft for consideration.

iGet

<register> [IN | OUT | EXPECT] [HEX | BIN | DEC | MNEM]

Return a TCL string representing the value associated with a register in the specified radix.

My Thoughts :

1. The default behavior of the PDL1 commands seems to be targeted for a

specific tester type. From my standpoint, most environments and PDL will be most interested in seeing the results of the
previous iApply rather than a history of the last N iApply operations. It seems to me that it would be better for
the iGet<*> commands to default to :

a. Capture Active (the data of the last operation is available without

the use of iCaptureData).

a. iGetReadValues returns the result of the last iApply for a register.

(does these need to be the last iRead-iApply sequence, not sure).

b. iGetWriteValues returns that value of the last iWrite command to that

register

c. iGetExpectValues returns the value of the last iRead command to that

register

 i.

If the last iRead did not have an expected value an X value is returned

 ii.

If an iApply has been performed after the iRead, what is returned . Expect data is not sticky so I would assume the current
state of the registers expect data is X

b. Capture depth is 1 by default.

2. The Radix of the return value is not defined here. It seems that we

should have some switch/parameter available to allow the user to select a Radix (BIN/HEX/mnemonic/INT?)

3. 1149.1 has a similar process defined that seems more compact and may

be a good place that we can consolidate (I will provide the exact command specification when I get access)

4. We can leave the iCaptureData function available for memory behind

pin or other testers that can make use of a pattern buffer history, but the default behavior would be defined as above.

iGet command is liked so much it was "brought" to P1687 before 1149.1 has voted

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

mailto:t.eaton@ssi.samsung.com
mailto:hugh_wallace@agilent.com
mailto:acrouch@asset-intertech.com
mailto:acrouch@asset-intertech.com
mailto:acrouch@asset-intertech.com
mailto:bill.bruce@siliconaid.com
mailto:hojun@cisco.com
mailto:jeffrey_wilkerson@non.agilent.com
mailto:JF_Cote@mentor.com
mailto:Jpotter@asset-intertech.com
mailto:Jpotter@asset-intertech.com
mailto:Jpotter@asset-intertech.com
mailto:Martin_Keim@mentor.com
mailto:mcoldewey@asset-intertech.com
mailto:mcoldewey@asset-intertech.com
mailto:mcoldewey@asset-intertech.com
mailto:mlaisne@QUALCOMM.COM
mailto:szuo@QUALCOMM.COM
mailto:teaton@ieee.org
mailto:carl.barnhart@SILICONAID.COM
mailto:ken.posse@avagotech.com

Register_fields are just pointers to bits. iWrite mysinglebit 0

 iWrite (in) iRead (expected) TDO (OUT)

init-data 0x54 0x13 XX

Mnemonics of course can be used as well

 iWrite (in) iRead (expected) TDO (OUT)

init-data PCIe Pass XX

iGet returns data from each of the three fields.
set val [iGet -IN -MNEM init-data]
set val2 [iGet -EXP -MNEM init-data]
set val3 [iGet -OUT -HEX init-data]
set val4 [iGet -FAIL -BIN init-data]
puts “$val $val2 $val3 $val4”
 - output: PCIe Pass 0xXX 0bXXXXXXXX

This type of operation
would require access
To UUT data

These operate on database only

42

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

Single IC DATABASE

PDL1

Single IC DATABASE

PDL1

Single IC DATABASE

PDL1

TDI
TDO

Record Scan Frames in Proprietary Tester Binary Format

Scan Frame

 For discussion: PDL1 ends up not being much different
 - Consider iGet -OUT <regname> as non-merge-able
 - iGet -IN and -EXP data is merge-able
-Requires use of TCL interpreter

-Instead of private compiler of PDL0
-math, expressions/branching all resolve into an iApply
 on a populated scan frame

In memory

43
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

default value is ‘off’ for param check

iProc Constraints { { check OFF } } {

if { $check == ON } {

set val1 [iGet -IN -MNEM DOMSELA] ; # DOM A ON

set val2 [iGet -IN -MNEM DOMSELB] ; # DOM B ON

if { $val1 == "ON" && $val2 == "ON" } {

 puts "ERROR Domain A cannot be turned on when Domain B is on"

 iWrite DOMSELA OFF

 return FALSE ;# instruct tool init_setup failed

}

}

return TRUE;

}

For consideration: Constraints can be described directly in PDL1

It does appear ‘sequential’ or ‘executable’ but the approach is essentially a
More robust form of the BSDL constraint attribute. Without the need for
The WG to create a language inside of BSDL

44
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Describing constraints/conditions

One approach which has been used in the past

attribute REGISTER_CONSTRAINTS of mychip : entity is
“(DOMAINA == ON && DOMAINB == ON)”;

Need a language for operators: X % ! + - /
And order precedence ()
 - note we have just two registers, what about 3 or 4 or 10?

What about?

attribute REGISTER_CONSTRAINTS of mychip : entity is
“(REGA + 1 && REGB)”; ;# math required

Sequential constraints REGA can’t be a 1 after being a 0 and REGB is
a 0? BSDL is a difficult place to describe these relationships

What happens when constraints not met? What is the error
message?

45
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

Merging with iMerge

46
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

 PLL

provided by IP provider, ideally it would be

beneficial to have these optimized for INIT_SETUP

iPDLLevel 0 –version IEEE1149_1_2012

iProcTarget XYZ_CORE

iProc setpll { val } {

PLL-WE is 1 bit and PLLREG is 1 bit

iWrite PLL-WE 0

iWrite PLLREG $val

iApply

iWrite PLL-WE 1

iApply

}
#end file

iPDLLevel 0 –version IEEE1149_1_2012 ; # level-0 PDL only

iProcTarget XYZ_IO

iProc init_setup { val } {

iWrite AC-MODE $val

iApply

}

#end file

Core1

XYZ_CORE

XYZ_IO

Core2

XYZ_CORE

Merging – used for reducing scan operations

47
IEEE 1149.1 PDL tutorial - CJ Clark,

Intellitech Corp.

iPDLLevel 0 –version IEEE1149_1_2012

iSource XYZ_CORE.PDL
iSource XYZ_IO.PDL

iProcTarget XYZOxygen

iProc init_setup { } {

iMerge –begin

iCall U1.Core1.setpll OFF ;# XYZ_CORE two iApply

iCall U1.Core2.setpll OFF ;# XYZ_CORE two iApply

iCall U1.i1.init_setup OFF ;# XYZ_IO one iApply
iMerge –end

}

#end of file

Core1

XYZ_CORE

XYZ_IO

Core2

XYZ_CORE

iMerge
Discussion: Are iCalls merged automatically in init_setup or
init_run?

48

reduces to two scan operations

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

49

IP
iProc init_setup {} {
iWrite PLL OFF
iApply
}

This adds to work for end user:
iWrite s1 ON
iApply
iCall PLL1.init_setup

Tool manages access to TDR
Potentially in one iApply this is done
iApply is :

IR scan if required
DR to turn on Domains (if any)
 observe DOM_EXT SEGSELs
DR - to open/capture power
 on internal power domains
DR - to PLL

s1 PLL1 TDR

PLL vendor does not know where PLL is in final IC

segsel

what PLL vendor knows

 IC level init_setup
iProc init_setup {} {
iCall Pll1.init_setup
iCall IO.init_setup
}

This fails

Like board level Scan Path Linkers, tool is
responsible for opening SEGSELs, turning
on DOMCTRL

Checking for OO on Power pins
and SEGSEL captures are catastrophic events
which a tool can know during tester binary
format recording and insert proper tester command

IEEE 1149.1 PDL tutorial - CJ Clark,
Intellitech Corp.

